其他分享
首页 > 其他分享> > P1073 [NOIP2009 提高组] 最优贸易 题解 分层图最短路

P1073 [NOIP2009 提高组] 最优贸易 题解 分层图最短路

作者:互联网

题目链接:https://www.luogu.com.cn/problem/P1073

解题思路:

将每个点 \(u\),拆成三层:

各层之间依次建图。

然后对于任意点 \(u\),设点 \(u\) 的权值为 \(a_u\),则:

(我在实际实现的时候都加上了 \(100\),主要是边权不为负比较好写一点)

求 \((1, 0)\) 到 \((n, 2)\) 的最短路。

示例程序:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 100010;

int n, m, dis[maxn*3], a[maxn];

struct Edge {
    int v, w;
};
vector<Edge> g[maxn*3];
bool vis[maxn*3];

int ha(int i, int j) {
    return j * n + i;
}

struct Node {
    int u, dis;
    bool operator < (const Node& b) const {
        return dis > b.dis;
    }
};
priority_queue<Node> que;

int main() {
    ios::sync_with_stdio(0);
    cin >> n >> m;
    for (int i = 1; i <= n; i ++)
        cin >> a[i];
    for (int i = 1; i <= n; i ++) {
        g[ha(i, 0)].push_back({ha(i, 1), 100+a[i]});
        g[ha(i, 1)].push_back({ha(i, 2), 100-a[i]});
    }
    while (m --) {
        int u, v, z;
        cin >> u >> v >> z;
        for (int i = 0; i < 3; i ++) {
            g[ha(u, i)].push_back({ha(v, i), 0});
            if (z == 2)
                g[ha(v, i)].push_back({ha(u, i), 0});
        }
    }
    memset(dis, -1, sizeof(dis));
    dis[ha(1, 0)] = 0;
    que.push({ha(1, 0), 0});
    while (!que.empty()) {
        Node nd = que.top();
        que.pop();
        int u = nd.u, d = nd.dis;
        if (vis[u]) continue;
        vis[u] = true;
        for (auto e : g[u]) {
            int v = e.v, w = e.w;
            if (!vis[v] && (dis[v] == -1 || dis[v] > d + w)) {
                dis[v] = d + w;
                que.push({v, dis[v]});
            }
        }
    }
    if (dis[ha(n, 2)] == -1) cout << 0 << endl;
    else cout << 200 - dis[ha(n, 2)] << endl;
    return 0;
}

标签:int,题解,NOIP2009,vis,que,maxn,ha,P1073,dis
来源: https://www.cnblogs.com/quanjun/p/15567315.html