标签:int signal 笔记 学习 进程 信号 Linux 第六章 sigaction
第六章 信号和信号处理 学习笔记
一、信号和中断
中断:是从I/O设备或协处理器发送到CPU的外部请求,它将CPU从正常执行转移到中断处理。
信号:发给进程的请求,将进程从正常执行转移到中断处理。
终端主要有以下几种类型
-
人员中断
-
进程中断
-
硬件中断
-
进程的陷阱错误
二、Unix/Linux信号示例
(1)按Ctrl+C组合键通常会导致当前运行的进程终止。原因如下:Ctrl+C组合键会生成一个键盘硬件中断。键盘中断处理程序将Ctrl+C组合键转换为SIGINT (2)信号,发送给终端上的所有进程,并唤醒等待键盘输入的进程。在内核模式下,每个进程都要检查和处理未完成的信号。进程对大多数信号的默认操作是调用内核的kexit(exitValue)函数来终止。在Linux中,exitValue的低位字节是导致进程终止的信号编号。
(2)用户可使用nohup a.out &命令在后台运行一个程序。即使在用户退出后,进程仍将继续运行。
(3)用户再次登录时也许会发现(通过ps-u LTD)后台进程仍在运行。用户可以使用sh命令kill pid (or kill -s 9 pid)杀死该进程。
三、Unix/Linux中的信号处理
1.信号类型
Unix/Linux支持31种不同的信号,每种信号在signal.h文件中都有定义
2.信号的来源
有如下三种:
来自硬件中断的信号:在进程执行过程中,一些硬件中断被转换为信号发送给进程。
来自异常的信号:当用户模式下的进程遇到异常时,会陷入内核模式,生成一个信号,并发送给自己。
来自其他进程的信号:进程可使用kill(pid, sig)系统调用向pid标识的目标进程发送信号。
3.进程PROC结构体中的信号
每个进程PROC都有一个32位的向量,用来记录发送给进程的信号。在位向量中,每一位代表一个信号编号。此外,他还有一个信号MASK位向量,用来屏蔽相应的信号。
4.信号处理函数
每个进程PROC都有一个信号处理数组int sig[32]。sig[32]数组的每个条目都指定了如何处理相应的信号,其中0表示DEFault (默认),1表示IGNore (忽略),其他非零值表示用户模式下预先安装的信号捕捉(处理)函数。
如果信号位向量中的位I为1,则会生成一个信号I或将其发送给进程。如果屏蔽位向量的位I为1,则信号会被阻塞或屏蔽。否则,信号未被阻塞。只有当信号存在并且未被阻塞时,信号才会生效或传递给进程。
5.安装信号捕捉函数
进程可使用系统调用:int r = signal(int signal_numberr void *handler);来修改选定信号编号的处理函数,SIGK1LL (9)和SIGSTOP (19)除外,它们不能修改。signal()系统调用在所有类Unix系统中均可用,但它有一些缺点:
1.在执行已安装的信号捕捉函数之前,通常将信号处理函数重置为DEFault。为捕捉下次出现的相同信号,必须重新安装捕捉函数。
2.signal()不能阻塞其他信号。
3.signal()只能向捕捉函数发送一个信号编号。
4.signal()可能不适用于多线程程序中的线程。
5.不同Unix版本的signal。可能会有所不同。
signal()已经被sigaction()函数所代替,它的原型是int sigaction (int signum, const struct sigaction *act, struct sigaction *oldact);,sigaction结构体的定义为
其中重要的字段如下:
sa_handler :该字段是指向处理函数的指针,该函数与signal()的处理函数有相同的原型。
sa_sigaction:该字段是运行信号处理函数的另一种方法。它的信号编号旁边有两个额外参数,其中siginfo t *提供关于所接收信号的更多信息。
sa_mask:可在处理函数执行期间设置要阻塞的信号。
sa_flags :可修改信号处理进程的行为。若要使用sa_sigaction处理函数,必须将sa_flags设置为SA_SIGINFO。
七、Linux中的IPC
IPC是指用于进程间通信的机制。在Linux中,IPC包含以下组成部分:
(1)管道和FIFO
一个管道有一个读取端和一个写入端。管道的主要用途是连接一对管道写进程和读进程。管道写进程可将数据写入管道,读进程可从管道中读取数据。管道控制机制要对管道读写操作进行同步控制。未命名管道供相关进程 使用,命名管道是FIFO的,可供不相关进程使用。在Linux中的管道读取操作为同步和阻塞。如果管道仍有写进程但没有数据,读进程会进行等待。
(2)信号
进程可使用kill系统调用向其他进程发送信号.其他进程使用信号捕捉函数处理信号,将信号用作IPC的一个主要缺点是信号只是用作通知,不含任何信息内容。
(3)System V IPC
包括共享内存、信号址和消息队列。在Linux中,多种 System V 1PC函数,例如用于添加/移除共享内存的shmat/shmdt、用于获取/操作信号反的semget/semop和用于发送/接收消息的msgsnd/msgrcv,都是库包装函数,它们都会向 Linux内核发出一个ipc()系统调用。ipc()的实现是Linux所特有的,不可移植。
(4)POSIX消息队列
(5)线程同步机制
进程是共享某些公共资源的线程。如果是使用有共享地址空间的clone()系统调用创建的进程,它们可使用互斥量和条件变量通过共享内存进行同步通信。另外,常规进程可添加到共享内存,使它们可作为线程进行同步。
(6)套接字
用于跨网络进程通信的IPC机制。
八、编程实例
根据书上的代码进行实践:
#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include<signal.h>
#include<setjmp.h>
#include<string.h>
jmp_buf env;
int count = 0;
void handler(int sig, siginfo_t *siginfo, void *context)
{
printf ("handler: sig=%d from PID=%d UID=%d count=%d\n",
sig, siginfo->si_pid, siginfo->si_uid, ++count);
if (count >= 4) // let it occur up to 4 times
longjmp(env, 1234);
}
int BAD()
{
int *ip = 0;
printf("in BAD(): try to dereference NULL pointer\n");
*ip = 123; // dereference a NULL pointer
printf("should not see this line\n");
}
int main (int argc, char *argv[])
{
int r;
struct sigaction act;
memset(&act, 0, sizeof(act));
act.sa_sigaction = &handler;
act.sa_flags = SA_SIGINFO;
sigaction(SIGSEGV,&act,NULL);
if ((r = setjmp(env)) == 0)
BAD();
else
printf("proc %d survived SEGMENTATION FAULT: r=%d\n",getpid(), r);
printf("proc %d looping\n",getpid());
while(1);
}
运行结果:
``
标签:int,signal,笔记,学习,进程,信号,Linux,第六章,sigaction
来源: https://www.cnblogs.com/zja2019/p/15551553.html
本站声明:
1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。