leetcode375. 猜数字大小 II(区间dp)
作者:互联网
链接:https://leetcode-cn.com/problems/guess-number-higher-or-lower-ii/
题目
我们正在玩一个猜数游戏,游戏规则如下:
我从 1 到 n 之间选择一个数字。
你来猜我选了哪个数字。
如果你猜到正确的数字,就会 赢得游戏 。
如果你猜错了,那么我会告诉你,我选的数字比你的 更大或者更小 ,并且你需要继续猜数。
每当你猜了数字 x 并且猜错了的时候,你需要支付金额为 x 的现金。如果你花光了钱,就会 输掉游戏 。
给你一个特定的数字 n ,返回能够 确保你获胜 的最小现金数,不管我选择那个数字 。
用例
示例 1:
输入:n = 10
输出:16
解释:制胜策略如下:
- 数字范围是 [1,10] 。你先猜测数字为 7 。
- 如果这是我选中的数字,你的总费用为 $0 。否则,你需要支付 $7 。
- 如果我的数字更大,则下一步需要猜测的数字范围是 [8,10] 。你可以猜测数字为 9 。
- 如果这是我选中的数字,你的总费用为 $7 。否则,你需要支付 $9 。
- 如果我的数字更大,那么这个数字一定是 10 。你猜测数字为 10 并赢得游戏,总费用为 $7 + $9 = $16 。
- 如果我的数字更小,那么这个数字一定是 8 。你猜测数字为 8 并赢得游戏,总费用为 $7 + $9 = $16 。
- 如果我的数字更小,则下一步需要猜测的数字范围是 [1,6] 。你可以猜测数字为 3 。
- 如果这是我选中的数字,你的总费用为 $7 。否则,你需要支付 $3 。
- 如果我的数字更大,则下一步需要猜测的数字范围是 [4,6] 。你可以猜测数字为 5 。
- 如果这是我选中的数字,你的总费用为 $7 + $3 = $10 。否则,你需要支付 $5 。
- 如果我的数字更大,那么这个数字一定是 6 。你猜测数字为 6 并赢得游戏,总费用为 $7 + $3 + $5 = $15 。
- 如果我的数字更小,那么这个数字一定是 4 。你猜测数字为 4 并赢得游戏,总费用为 $7 + $3 + $5 = $15 。
- 如果我的数字更小,则下一步需要猜测的数字范围是 [1,2] 。你可以猜测数字为 1 。
- 如果这是我选中的数字,你的总费用为 $7 + $3 = $10 。否则,你需要支付 $1 。
- 如果我的数字更大,那么这个数字一定是 2 。你猜测数字为 2 并赢得游戏,总费用为 $7 + $3 + $1 = $11 。
在最糟糕的情况下,你需要支付 $16 。因此,你只需要 $16 就可以确保自己赢得游戏。
示例 2:
输入:n = 1
输出:0
解释:只有一个可能的数字,所以你可以直接猜 1 并赢得游戏,无需支付任何费用。
示例 3:
输入:n = 2
输出:1
解释:有两个可能的数字 1 和 2 。
- 你可以先猜 1 。
- 如果这是我选中的数字,你的总费用为 $0 。否则,你需要支付 $1 。
- 如果我的数字更大,那么这个数字一定是 2 。你猜测数字为 2 并赢得游戏,总费用为 $1 。
最糟糕的情况下,你需要支付 $1 。
提示:
1 <= n <= 200
思路
标准的区间dp模板题
在区间[i,j]中取得保证获胜最优解情况,选择k属于[i,j],取k + max(f[i][k - 1], f[k + 1][j])的值最小的情况(左右区间子树中取最大代价)
class Solution {
public:
int getMoneyAmount(int n) {
vector<vector<int>> f(n+1,vector<int>(n+1));
for (int i = n - 1; i >= 1; i--) {
for (int j = i + 1; j <= n; j++) {
int minCost = INT_MAX;
for (int k = i; k < j; k++) {
int cost = k + max(f[i][k - 1], f[k + 1][j]);
minCost = min(minCost, cost);
}
f[i][j] = minCost;
}
}
return f[1][n];
}
};
标签:10,数字,leetcode375,II,总费用,如果,猜测,dp,游戏 来源: https://www.cnblogs.com/kitamu/p/15549274.html