ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

树的超详细解读

2021-11-09 15:30:00  阅读:300  来源: 互联网

标签:次树 结点 遍历 解读 举个 例子 详细 节点


树的超详细解读

树的逻辑结构表示方法

树形表示法
在这里插入图片描述
文氏图表示法
在这里插入图片描述
凹入表示法
在这里插入图片描述
括号表示法
A(B(E,F)),C(G(J)),D(H,I(K,L,M)))


树的基本术语

结点的度:树中某个结点的子树的个数

树的度:树中各个结点中,最大值就是,通常我们将度为m的树,称为m次树

举个例子

在这里插入图片描述
此为 一颗 3次树


分支结点:度不为零的结点
叶子结点:度为零的结点

举个例子
在这里插入图片描述

此处,D,I,J,G,H,F 都为叶子结点


路径:一条路,长度等于通过结点数减1

举个例子
例如,A -J
在这里插入图片描述

路径为:A - B - E - J 长度为 3


  • 孩子结点:每个结点的后继结点(或子女结点
  • 双亲结点:相应的此结点作为孩子结点双亲结点

  • 结点的层次和树的高度:树中的每个结点都处在一定的层次上,根节点在第一层,然后以此类推。最大的层次称为树的高度(或树的深度

  • 有序树 无序树:有序树,按照一定顺序排列的,且相对次序不可随意变换。无序树,则反之。

  • 森林:互不相交的树的集合。可以这么说,一个简单的树,把根节点去掉过后,就是森林了
    在这里插入图片描述

树的性质

性质1:树中的结点数等于所有结点的度之和加1
(这里的证明,以相对简单来解释)
证明
举个例子
在这里插入图片描述
在此,我在所有结点上都标上了度,你会发现,除了叶子结点,也就是度为零的结点,其他结点加起来,就是结点数,但是你会发现根节点并没有算进去,所以这里我们要加1


性质2:度为m的树中第 i 层上最多有 m i-1 个结点(i >= 1)

证明:数学归纳法
对于第一层,将i = 1代进去,mi-1 = m1-1 = 1,显然结论成立
对于第 i - 1 层,将 i = i - 1代进去,第 i - 1层上最多有mi-2
由树的度定义知,度为最大的结点数,那么对于第 i 层来说,第 i - 1层上,每个结点都有m个结点,那么结点数为第 i - 1 层上的m倍。
对于第 i 层,mi-2 * m = mi-1,故在第i层上,也适用这个公式。

举个例子
我们可以用另一种想法来证明这个性质
假设一个度为3的树
在这里插入图片描述
我们假设每个结点都是最大结点数,你会发现,
第一层是30
第二层是31
第三层是32
第四层是33
不难发现其中的规律就是公式 mi-1

推广:如果说当一颗树某一层满足以上的规律,称该层是满的,那么一颗树全部都满足,则称这颗树为满m次树 ,以刚刚这个例子来看,便应为满3次树


性质3:高度为h的m次树最多有 ** m h − 1 m − 1 {m^h-1\over m-1} m−1mh−1​**个结点
证明:
由性质2,可以推出,如果我们要球的最多的结点数,那么每一个层都应该是最大结点数
计算如下:m0 + m1 + m2 +……+mh-1 = m h − 1 m − 1 {m^h-1\over m-1} m−1mh−1​


性质4:具有n个结点的m次树的最小高度为 >= l o g m ( n ( m − 1 ) + 1 ) {log_m(n(m -1)+1)} logm​(n(m−1)+1)整数

证明,设具有n个结点的最小高度为 h,这样的树中前h - 1层都是满的,最后一层的结点数,可能满,可能也不满,但至少有一个结点

(我亲手写了证明)
在这里插入图片描述

其实,证明下来,还是用到性质3,相当徐性质3的拓展吧。


树的基本运算

树的运算主要分为三类

  • 查找满足特定关系的结点,比如查当前结点的双亲结点等
  • 插入或删除某个结点
  • 遍历树中的每个结点

树的遍历也分为三类

  • 先根遍历
    **过程:**先访问根节点,按照从左到右的次序遍历根节点每一颗子树
    举个例子
    在这里插入图片描述

  • 后根遍历:从最左边的最下面的结点开始
    举个例子
    在这里插入图片描述
    也就是先把子节点都遍历完再去遍历结点

  • 层次遍历
    过程:从第一层开始, 从左到右遍历
    举个例子
    在这里插入图片描述

树的存储结构

树的存储结构有很多,这里介绍三种

  • 双亲存储结构

顺序存储结构,除了存储值,还存储其双亲的位置

举个例子

看图我们大概就能明白,就是有一个伪指针存放了双亲结点的位置
在这里插入图片描述
代码实现

class PTree< E >
{
	E data; //存放结点的值
	int parent; //存放双亲的位置
}

  • 孩子链存储结构(此不谈)

  • 兄弟链存储结构(简略)
    此结构,统共每个结点有三个域,一个数据元素域,一个指向该节点的第一个孩子结点的指针域,一个指向该结点的下一个兄弟节点的指针域,每一个结点有固定的两个指针域

举个例子
在这里插入图片描述
从这个图上我们就可以很快懂得这种结构

二叉树

接下来要学习的便是二叉树,这将在我另一篇文章中呈现

标签:次树,结点,遍历,解读,举个,例子,详细,节点
来源: https://blog.csdn.net/weixin_52232901/article/details/121213584

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有