其他分享
首页 > 其他分享> > 1026-pytorch学习笔记

1026-pytorch学习笔记

作者:互联网

Pytorch学习笔记

张量Tensor

张量是一个统称,其中包含很多类型:

  1. 0阶张量:标量、常数,0-D Tensor

  2. 1阶张量:向量,1-D Tensor

  3. 2阶张量:矩阵,2-D Tensor

  4. 3阶张量

Pytorch中创建张量

使用python中的列表或者序列创建tensor

torch.tensor([[1., -1.], [1., -1.]])
tensor([[ 1.0000, -1.0000],
        [ 1.0000, -1.0000]])

使用numpy中的数组创建tensor

torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))
tensor([[ 1,  2,  3],
        [ 4,  5,  6]])

使用torch的api创建tensor

  1. torch.empty(3,4)创建3行4列的空的tensor,会用无用数据进行填充

  2. torch.ones([3,4]) 创建3行4列的全为1的tensor

  3. torch.zeros([3,4])创建3行4列的全为0的tensor

  4. torch.rand([3,4]) 创建3行4列的随机值的tensor,随机值的区间是[0, 1)

torch.rand(2, 3)
tensor([[ 0.8237,  0.5781,  0.6879],
[ 0.3816,  0.7249,  0.0998]])
  1. torch.randint(low=0,high=10,size=[3,4]) 创建3行4列的随机整数的tensor,随机值的区间是[low, high)
torch.randint(3, 10, (2, 2))
tensor([[4, 5],
    [6, 7]])

   torch.randn([3,4]) 创建3行4列的随机数的tensor,随机值的分布式均值为0,方差为1

Pytorch中tensor的常用方法

获取tensor中的数据(当tensor中只有一个元素可用):tensor.item()

 

In [10]: a = torch.tensor(np.arange(1))

In [11]: a
Out[11]: tensor([0])

In [12]: a.item()
Out[12]: 0

转化为numpy数组

In [55]: z.numpy()
Out[55]:
array([[-2.5871205],
       [ 7.3690367],
       [-2.4918075]], dtype=float32)

获取形状:tensor.size()

 x
Out[72]:
tensor([[    1,     2],
        [    3,     4],
        [    5,    10]], dtype=torch.int32)

In [73]: x.size()
Out[73]: torch.Size([3, 2])

形状改变:tensor.view((3,4))。类似numpy中的reshape,是一种浅拷贝,仅仅是形状发生改变

In [76]: x.view(2,3)
Out[76]:
tensor([[    1,     2,     3],
        [    4,     5,    10]], dtype=torch.int32)

获取阶数:tensor.dim()

获取最大值:tensor.max()

转置:tensor.t()

tensor的数据类型

 

 类型的修改

In [17]: a
Out[17]: tensor([1, 2], dtype=torch.int32)

In [18]: a.type(torch.float)
Out[18]: tensor([1., 2.])

In [19]: a.double()
Out[19]: tensor([1., 2.], dtype=torch.float64)

tensor的其他操作

tensor和tensor相加

In [94]: x = x.new_ones(5, 3, dtype=torch.float)

In [95]: y = torch.rand(5, 3)

In [96]: x+y
Out[96]:
tensor([[1.6437, 1.9439, 1.5393],
        [1.3491, 1.9575, 1.0552],
        [1.5106, 1.0123, 1.0961],
        [1.4382, 1.5939, 1.5012],
        [1.5267, 1.4858, 1.4007]])
In [98]: torch.add(x,y)
Out[98]:
tensor([[1.6437, 1.9439, 1.5393],
        [1.3491, 1.9575, 1.0552],
        [1.5106, 1.0123, 1.0961],
        [1.4382, 1.5939, 1.5012],
        [1.5267, 1.4858, 1.4007]])
In [99]: x.add(y)
Out[99]:
tensor([[1.6437, 1.9439, 1.5393],
        [1.3491, 1.9575, 1.0552],
        [1.5106, 1.0123, 1.0961],
        [1.4382, 1.5939, 1.5012],
        [1.5267, 1.4858, 1.4007]])
In [100]: x.add_(y)  #带下划线的方法会对x进行就地修改
Out[100]:
tensor([[1.6437, 1.9439, 1.5393],
        [1.3491, 1.9575, 1.0552],
        [1.5106, 1.0123, 1.0961],
        [1.4382, 1.5939, 1.5012],
        [1.5267, 1.4858, 1.4007]])

In [101]: x #x发生改变
Out[101]:
tensor([[1.6437, 1.9439, 1.5393],
        [1.3491, 1.9575, 1.0552],
        [1.5106, 1.0123, 1.0961],
        [1.4382, 1.5939, 1.5012],
        [1.5267, 1.4858, 1.4007]])

带下划线的方法(比如:add_)会对tensor进行就地修改

手写线性回归

import torch
import matplotlib.pyplot as plt

learning_rate=0.01

#1.准备数据
#y=3x+0.8
x=torch.rand([500,1])
y_true=3*x+0.8

#2.通过模型计算y_predict
w = torch.rand([1,1],requires_grad=True)
b = torch.tensor(0,requires_grad=True,dtype=torch.float32)


#4.通过循环,反向传播,更新参数
for i in range(2000):
    y_predict = torch.matmul(x, w) + b
    # 3.计算loss
    loss = (y_true - y_predict).pow(2).mean()

    if w.grad is not  None:
        w.grad.data.zero_()
    if b.grad is not None:
        b.grad.data.zero_()

    loss.backward() #反向传播
    w.data = w.data - learning_rate * w.grad
    b.data = b.data - learning_rate * b.grad
    if i % 50==0:
        print("w ,b ,loss",w.item(),b.item(),loss.item())

plt.figure(figsize=(20,8))
plt.scatter(x.numpy().reshape(-1),y_true.numpy().reshape(-1))
y_predict = torch.matmul(x, w) + b
plt.plot(x.numpy().reshape(-1),y_predict.detach().numpy().reshape(-1),c='r')
plt.show()

结果:

 

 

 

标签:1026,tensor,numpy,torch,笔记,pytorch,dtype,grad,Out
来源: https://www.cnblogs.com/xiaofengzai/p/15468367.html