其他分享
首页 > 其他分享> > STM32F103系列芯片的地址映射和寄存器映射原理,GPIO端口的初始化

STM32F103系列芯片的地址映射和寄存器映射原理,GPIO端口的初始化

作者:互联网

文章目录

一、STM32F103系列芯片的地址映射和寄存器映射原理

1.寄存器

2.地址映射和寄存器映射原理

二、GPIO端口的初始化

1.GPIO简介

GPIO(英语:General-purpose input/output),通用型之输入输出的简称,功能类似8051的P0—P3,其接脚可以供使用者由程控自由使用,PIN脚依现实考量可作为通用输入(GPI)或通用输出(GPO)或通用输入与输出(GPIO),如当clk generator, chip select等。

既然一个引脚可以用于输入、输出或其他特殊功能,那么一定有寄存器用来选择这些功能。对于输入,一定可以通过读取某个寄存器来确定引脚电位的高低;对于输出,一定可以通过写入某个寄存器来让这个引脚输出高电位或者低电位;对于其他特殊功能,则有另外的寄存器来控制它们。
请添加图片描述

2.GPIO输入、输出模式及说明

2.1浮空输入模式

请添加图片描述
外部的电平信号通过左边编号1的I/O端口进入MCU,经过编号2的施密特触发器的整形送入编号3的“输入数据寄存器”,在“输入数据寄存器”的另一端(编号4),CPU可以随时读出I/O端口的电平状态。

2.2 输入上拉模式

请添加图片描述
输入上拉模式;与前面的浮空输入模式相比,仅仅是在数据通道上部,接入了一个上拉电阻,同样,CPU可以随时在“输入数据寄存器”的另一端,读出I/O端口的电平状态。

2.3输入下拉模式

请添加图片描述
输入下拉模式;数据通道的下部,接入了一个下拉电阻。

2.4模拟输入模式

请添加图片描述
模拟输入模式;信号从左边编号1的端口进入,从右边编号2的一端直接进入ADC模块。这里我们看到所有的上拉、下拉电阻和施密特触发器,均处于断开状态,因此“输入数据寄存器”将不能反映端口上的电平状态,也就是说,模拟输入配置下,CPU不能在“输入数据寄存器”上读到有效的数据。

2.5开漏输出模式

请添加图片描述
开漏输出模式;当CPU在左边的编号1端通过位设置/清除寄存器,或输出数据寄存器写入数据后,该数据位将通过编号2的输出控制电路传送到编号4的I/O端口,如果CPU写入的是逻辑“1”,则编号3的N-MOS管将处于关闭状态,此时I/O端口的电平将由外部的上拉电阻决定,如果CPU写入的是逻辑“0”,则编号3的N-MOS管将处于开启状态,此时I/O端口的电平被编号3的N-MOS管拉到了VSS的零电位。在图的上半部,施密特触发器处于开启状态,这意味着CPU可以在“输入数据寄存器”的另一端,随时监控I/O端口的状态;通过这个特性,还实现了虚拟的I/O端口双向通信:只要CPU输出逻辑“1”,由于编号3的N-MOS管处于关闭状态,I/O端口的电平将完全由外部电路决定,因此,CPU可以在“输入数据寄存器”读到外部电路的信号,而不是它自己输出的逻辑“1”。

2.6开漏复用输出模式

请添加图片描述
开漏复用输出模式;与开漏输出模式的配置基本相同,不同的是编号2的输出控制电路的输入,与复用功能的输出端相连,此时输出数据寄存器被从输出通道断开了。同样,CPU可以从“输入数据寄存器”读到外部电路的信号。

2.7推挽输出模式

请添加图片描述
推免输出模式;在开漏输出模式的基础上,推挽输出模式仅仅是在编号2的输出控制电路之后,增加了一个P-MOS管。当输出逻辑“1”时,编号3处的P-MOS管导通,而下方的N-MOS管截止,达到输出高电平的目的。当输出逻辑“0”时,编号3处的P-MOS管截止,而下方的N-MOS管导通,达到输出低电平的目的。在这个模式下,CPU仍然可以从“输入数据寄存器”读到外部电路的信号。

2.8推挽复用输出模式

请添加图片描述
推挽复用输出模式,同样的道理,编号2的输出控制电路的输入,与复用功能的输出端相连,此时输出数据寄存器被从输出通道断开了。

3.GPIO初始化步骤

4.实例

GPIO_InitTypeDef GPIO_InitStructure;
第一步:使能GPIOA的时钟:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);

第二步:设置GPIOA参数:输出OR输入,工作模式,端口翻转速率
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_6| GPIO_Pin_7| GPIO_Pin_8; //设定要操作的管脚
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //设置为推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // IO口速度为50MHz

第三步:调用GPIOA口初始化函数,进行初始化。
GPIO_Init(GPIOA, &GPIO_InitStructure); //根据设定参数初始化GPIOA

第四步:调用GPIO-SetBits函数,进行相应为的置位。
GPIO_SetBits(GPIOA,GPIO_Pin_0); //输出高

GPIO_InitTypeDef GPIO_InitStructure;
第一步:使能GPIOA,GPIOE的时钟:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE, ENABLE);

第二步:设置GPIOA,GPIOE参数:输出OR输入,工作模式,端口翻转速率
第三步:调用GPIOA口初始化函数,进行初始化。
第四步:调用GPIO-SetBits函数,进行相应为的置位。

把第二、三、四步合并分别设置GPIOA和GPIOE
先设置GPIOA
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; // 第四个口,PA4
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //设置为推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // IO口速度为50MHz
GPIO_Init(GPIOA,&GPIO-InitST); //根据设定参数初始化GPIOA
GPIO_SetBits(GPIOA,GPIO_Pin_4); //输出高

再设置GPIOE
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; // 第三个口,PE3
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //设置为推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // IO口速度为50MHz
GPIO_Init(GPIOE,&GPIO-InitST); //根据设定参数初始化GPIOE
GPIO_SetBits(GPIOE,GPIO_Pin_3); //输出高

参考:https://www.zhihu.com/topic/20078322/hot.

标签:STM32F103,输出,模式,地址映射,GPIOA,寄存器,GPIO,输入
来源: https://blog.csdn.net/cleveryoga/article/details/120927837