其他分享
首页 > 其他分享> > 窗口函数: 功能介绍

窗口函数: 功能介绍

作者:互联网

https://blog.csdn.net/weixin_38750084/article/details/82779910

简介

本文主要介绍hive中的窗口函数.hive中的窗口函数和sql中的窗口函数相类似,都是用来做一些数据分析类的工作,一般用于olap分析(在线分析处理)。

概念

我们都知道在sql中有一类函数叫做聚合函数,例如sum()、avg()、max()等等,这类函数可以将多行数据按照规则聚集为一行,一般来讲聚集后的行数是要少于聚集前的行数的.但是有时我们想要既显示聚集前的数据,又要显示聚集后的数据,这时我们便引入了窗口函数.

在深入研究Over字句之前,一定要注意:在SQL处理中,窗口函数都是最后一步执行,而且仅位于Order by字句之前。

数据准备

我们准备一张order表,字段分别为name,orderdate,cost.数据内容如下:

jack,2015-01-01,10
tony,2015-01-02,15
jack,2015-02-03,23
tony,2015-01-04,29
jack,2015-01-05,46
jack,2015-04-06,42
tony,2015-01-07,50
jack,2015-01-08,55
mart,2015-04-08,62
mart,2015-04-09,68
neil,2015-05-10,12
mart,2015-04-11,75
neil,2015-06-12,80
mart,2015-04-13,94
在hive中建立一张表t_window,将数据插入进去.

实例

聚合函数+over

假如说我们想要查询在2015年4月份购买过的顾客及总人数,我们便可以使用窗口函数去去实现

select name,count(*) over ()
from t_window
where substring(orderdate,1,7) = '2015-04'
得到的结果如下:

name count_window_0
mart 5
mart 5
mart 5
mart 5
jack 5
可见其实在2015年4月一共有5次购买记录,mart购买了4次,jack购买了1次.事实上,大多数情况下,我们是只看去重后的结果的.针对于这种情况,我们有两种实现方式

第一种:distinct

select distinct name,count(*) over ()
from t_window
where substring(orderdate,1,7) = '2015-04'

第二种:group by

select name,count(*) over ()
from t_window
where substring(orderdate,1,7) = '2015-04'
group by name
执行后的结果如下:
name count_window_0
mart 2
jack 2

partition by子句

Over子句之后第一个提到的就是Partition By.Partition By子句也可以称为查询分区子句,非常类似于Group By,都是将数据按照边界值分组,而Over之前的函数在每一个分组之内进行,如果超出了分组,则函数会重新计算.

实例

我们想要去看顾客的购买明细及月购买总额,可以执行如下的sql

select name,orderdate,cost,sum(cost) over(partition by month(orderdate))
from t_window
执行结果如下:

name orderdate cost sum_window_0
jack 2015-01-01 10 205
jack 2015-01-08 55 205
tony 2015-01-07 50 205
jack 2015-01-05 46 205
tony 2015-01-04 29 205
tony 2015-01-02 15 205
jack 2015-02-03 23 23
mart 2015-04-13 94 341
jack 2015-04-06 42 341
mart 2015-04-11 75 341
mart 2015-04-09 68 341
mart 2015-04-08 62 341
neil 2015-05-10 12 12
neil 2015-06-12 80 80
可以看出数据已经按照月进行汇总了.

order by子句

上述的场景,假如我们想要将cost按照月进行累加.这时我们引入order by子句.

order by子句会让输入的数据强制排序(文章前面提到过,窗口函数是SQL语句最后执行的函数,因此可以把SQL结果集想象成输入数据)。Order By子句对于诸如Row_Number(),Lead(),LAG()等函数是必须的,因为如果数据无序,这些函数的结果就没有任何意义。因此如果有了Order By子句,则Count(),Min()等计算出来的结果就没有任何意义。

我们在上面的代码中加入order by

select name,orderdate,cost,sum(cost) over(partition by month(orderdate) order by orderdate )
from t_window
得到的结果如下:(order by默认情况下聚合从起始行到当前行的数据)

name orderdate cost sum_window_0
jack 2015-01-01 10 10
tony 2015-01-02 15 25 //10+15
tony 2015-01-04 29 54 //10+15+29
jack 2015-01-05 46 100 //10+15+29+46
tony 2015-01-07 50 150
jack 2015-01-08 55 205
jack 2015-02-03 23 23
jack 2015-04-06 42 42
mart 2015-04-08 62 104
mart 2015-04-09 68 172
mart 2015-04-11 75 247
mart 2015-04-13 94 341
neil 2015-05-10 12 12
neil 2015-06-12 80 80

window子句

我们在上面已经通过使用partition by子句将数据进行了分组的处理.如果我们想要更细粒度的划分,我们就要引入window子句了.

我们首先要理解两个概念:

当同一个select查询中存在多个窗口函数时,他们相互之间是没有影响的.每个窗口函数应用自己的规则.

window子句:

我们按照name进行分区,按照购物时间进行排序,做cost的累加.
如下我们结合使用window子句进行查询

select name,orderdate,cost,
sum(cost) over() as sample1,--所有行相加
sum(cost) over(partition by name) as sample2,--按name分组,组内数据相加
sum(cost) over(partition by name order by orderdate) as sample3,--按name分组,组内数据累加
sum(cost) over(partition by name order by orderdate rows between UNBOUNDED PRECEDING and current row ) as sample4 ,--和sample3一样,由起点到当前行的聚合
sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING and current row) as sample5, --当前行和前面一行做聚合
sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING AND 1 FOLLOWING ) as sample6,--当前行和前边一行及后面一行
sum(cost) over(partition by name order by orderdate rows between current row and UNBOUNDED FOLLOWING ) as sample7 --当前行及后面所有行
from t_window;
得到查询结果如下:

name orderdate cost sample1 sample2 sample3 sample4 sample5 sample6 sample7
jack 2015-01-01 10 661 176 10 10 10 56 176
jack 2015-01-05 46 661 176 56 56 56 111 166
jack 2015-01-08 55 661 176 111 111 101 124 120
jack 2015-02-03 23 661 176 134 134 78 120 65
jack 2015-04-06 42 661 176 176 176 65 65 42
mart 2015-04-08 62 661 299 62 62 62 130 299
mart 2015-04-09 68 661 299 130 130 130 205 237
mart 2015-04-11 75 661 299 205 205 143 237 169
mart 2015-04-13 94 661 299 299 299 169 169 94
neil 2015-05-10 12 661 92 12 12 12 92 92
neil 2015-06-12 80 661 92 92 92 92 92 80
tony 2015-01-02 15 661 94 15 15 15 44 94
tony 2015-01-04 29 661 94 44 44 44 94 79
tony 2015-01-07 50 661 94 94 94 79 79 50

窗口函数中的序列函数

主要序列函数是不支持window子句的.

hive中常用的序列函数有下面几个:

NTILE
NTILE(n),用于将分组数据按照顺序切分成n片,返回当前切片值

NTILE不支持ROWS BETWEEN,
比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)

如果切片不均匀,默认增加第一个切片的分布
这个函数用什么应用场景呢?假如我们想要每位顾客购买金额前1/3的交易记录,我们便可以使用这个函数.

select name,orderdate,cost,
ntile(3) over() as sample1 , --全局数据切片
ntile(3) over(partition by name), -- 按照name进行分组,在分组内将数据切成3份
ntile(3) over(order by cost),--全局按照cost升序排列,数据切成3份
ntile(3) over(partition by name order by cost ) --按照name分组,在分组内按照cost升序排列,数据切成3份
from t_window
得到的数据如下:

name orderdate cost sample1 sample2 sample3 sample4
jack 2015-01-01 10 3 1 1 1
jack 2015-02-03 23 3 1 1 1
jack 2015-04-06 42 2 2 2 2
jack 2015-01-05 46 2 2 2 2
jack 2015-01-08 55 2 3 2 3
mart 2015-04-08 62 2 1 2 1
mart 2015-04-09 68 1 2 3 1
mart 2015-04-11 75 1 3 3 2
mart 2015-04-13 94 1 1 3 3
neil 2015-05-10 12 1 2 1 1
neil 2015-06-12 80 1 1 3 2
tony 2015-01-02 15 3 2 1 1
tony 2015-01-04 29 3 3 1 2
tony 2015-01-07 50 2 1 2 3
如上述数据,我们去sample4 = 1的那部分数据就是我们要的结果

排序函数

row_number
rank
dense_rank
这三个窗口函数的使用场景非常多

注意:rank和dense_rank的区别在于排名相等时会不会留下空位.

举例如下:

SELECT
cookieid,
createtime,
pv,
RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn1,
DENSE_RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn2,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn3
FROM lxw1234
WHERE cookieid = 'cookie1';

cookieid day pv rn1 rn2 rn3

cookie1 2015-04-12 7 1 1 1
cookie1 2015-04-11 5 2 2 2
cookie1 2015-04-15 4 3 3 3
cookie1 2015-04-16 4 3 3 4
cookie1 2015-04-13 3 5 4 5
cookie1 2015-04-14 2 6 5 6
cookie1 2015-04-10 1 7 6 7
rn1: 15号和16号并列第3, 13号排第5
rn2: 15号和16号并列第3, 13号排第4
rn3: 如果相等,则按记录值排序,生成唯一的次序,如果所有记录值都相等,或许会随机排吧。
LAG和LEAD函数
这两个函数为常用的窗口函数,可以返回上下数据行的数据.
以我们的订单表为例,假如我们想要查看顾客上次的购买时间可以这样去查询

select name,orderdate,cost,
lag(orderdate,1,'1900-01-01') over(partition by name order by orderdate ) as time1,
lag(orderdate,2) over (partition by name order by orderdate) as time2
from t_window;
查询后的数据为:

name orderdate cost time1 time2
jack 2015-01-01 10 1900-01-01 NULL
jack 2015-01-05 46 2015-01-01 NULL
jack 2015-01-08 55 2015-01-05 2015-01-01
jack 2015-02-03 23 2015-01-08 2015-01-05
jack 2015-04-06 42 2015-02-03 2015-01-08
mart 2015-04-08 62 1900-01-01 NULL
mart 2015-04-09 68 2015-04-08 NULL
mart 2015-04-11 75 2015-04-09 2015-04-08
mart 2015-04-13 94 2015-04-11 2015-04-09
neil 2015-05-10 12 1900-01-01 NULL
neil 2015-06-12 80 2015-05-10 NULL
tony 2015-01-02 15 1900-01-01 NULL
tony 2015-01-04 29 2015-01-02 NULL
tony 2015-01-07 50 2015-01-04 2015-01-02
time1取的为按照name进行分组,分组内升序排列,取上一行数据的值,见下图。

time2取的为按照name进行分组,分组内升序排列,取上面2行的数据的值,注意当lag函数未设置行数值时,默认为1行.设定取不到时的默认值时,取null值.

lead函数与lag函数方向相反,取向下的数据.

first_value和last_value

first_value取分组内排序后,截止到当前行,第一个值
last_value取分组内排序后,截止到当前行,最后一个值

select name,orderdate,cost,
first_value(orderdate) over(partition by name order by orderdate) as time1,
last_value(orderdate) over(partition by name order by orderdate) as time2
from t_window
查询结果如下:

name orderdate cost time1 time2
jack 2015-01-01 10 2015-01-01 2015-01-01
jack 2015-01-05 46 2015-01-01 2015-01-05
jack 2015-01-08 55 2015-01-01 2015-01-08
jack 2015-02-03 23 2015-01-01 2015-02-03
jack 2015-04-06 42 2015-01-01 2015-04-06
mart 2015-04-08 62 2015-04-08 2015-04-08
mart 2015-04-09 68 2015-04-08 2015-04-09
mart 2015-04-11 75 2015-04-08 2015-04-11
mart 2015-04-13 94 2015-04-08 2015-04-13
neil 2015-05-10 12 2015-05-10 2015-05-10
neil 2015-06-12 80 2015-05-10 2015-06-12
tony 2015-01-02 15 2015-01-02 2015-01-02
tony 2015-01-04 29 2015-01-02 2015-01-04
tony 2015-01-07 50 2015-01-02 2015-01-07
原文参考:https://blog.csdn.net/qq_26937525/article/details/54925827

扩展:

row_number的用途非常广泛,排序最好用它,它会为查询出来的每一行记录生成一个序号,依次排序且不会重复,注意使用row_number函数时必须要用over子句选择对某一列进行排序才能生成序号。

rank函数用于返回结果集的分区内每行的排名,行的排名是相关行之前的排名数加一。简单来说rank函数就是对查询出来的记录进行排名,与row_number函数不同的是,rank函数考虑到了over子句中排序字段值相同的情况,如果使用rank函数来生成序号,over子句中排序字段值相同的序号是一样的,后面字段值不相同的序号将跳过相同的排名号排下一个,也就是相关行之前的排名数加一,可以理解为根据当前的记录数生成序号,后面的记录依此类推。

dense_rank函数的功能与rank函数类似,dense_rank函数在生成序号时是连续的,而rank函数生成的序号有可能不连续。dense_rank函数出现相同排名时,将不跳过相同排名号,rank值紧接上一次的rank值。在各个分组内,rank()是跳跃排序,有两个第一名时接下来就是第四名,dense_rank()是连续排序,有两个第一名时仍然跟着第二名。

借助实例能更直观地理解:

假设现在有一张学生表student,学生表中有姓名、分数、课程编号。

select * from student;

现在需要按照课程对学生的成绩进行排序:

--row_number() 顺序排序
select name,course,row_number() over(partition by course order by score desc) rank from student;

--rank() 跳跃排序,如果有两个第一级别时,接下来是第三级别
select name,course,rank() over(partition by course order by score desc) rank from student;

--dense_rank() 连续排序,如果有两个第一级别时,接下来是第二级别
select name,course,dense_rank() over(partition by course order by score desc) rank from student;

取得每门课程的第一名:

--每门课程第一名只取一个:
select * from (select name,course,row_number() over(partition by course order by score desc) rank from student) where rank=1;
--每门课程第一名取所有:
select * from (select name,course,dense_rank() over(partition by course order by score desc) rank from student) where rank=1;
--每门课程第一名取所有:
select * from (select name,course,rank() over(partition by course order by score desc) rank from student) where rank=1;
  附:每门课程第一名取所有的其他方法(使用group by 而不是partition by):

select s.* from student s
  inner join(select course,max(score) as score from student group by course) c
  on s.course=c.course and s.score=c.score; 
--或者使用using关键字简化连接
select * from student s
  inner join(select course,max(score) as score from student group by course) c
  using(course,score);

关于Parttion by:

  Parttion by关键字是Oracle中分析性函数的一部分,用于给结果集进行分区。它和聚合函数Group by不同的地方在于它只是将原始数据进行名次排列,能够返回一个分组中的多条记录(记录数不变),而Group by是对原始数据进行聚合统计,一般只有一条反映统计值的结果(每组返回一条)。

  TIPS:

  使用rank over()的时候,空值是最大的,如果排序字段为null, 可能造成null字段排在最前面,影响排序结果。

  可以这样: rank over(partition by course order by score desc nulls last)

总结:

  在使用排名函数的时候需要注意以下三点:

  1、排名函数必须有 OVER 子句。

  2、排名函数必须有包含 ORDER BY 的 OVER 子句。

  3、分组内从1开始排序

标签:rank,01,窗口,函数,04,介绍,jack,2015,name
来源: https://www.cnblogs.com/ccli555/p/15406917.html