标签:IoU area cfg mmsegmentation type mmdetection data Average 加载
Openmmlab无法加载预训练模型的问题
这两天在调试mmsegmentation和mmdetection,可能是因为自己的原因,预训练模型死活加载不了预训练的模型,无法正常的索引到预训练模型的地址,最后通过降低版本的方式成功地加载了预训练模型并跑了起来,具体的流程如下:
解决过程
-
安装pytorch和torchvision
我是30系列的显卡,所以需要的cuda版本需要是11以上。
conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.1 -c pytorch -c conda-forge
-
安装mmcv-full
pip install mmcv-full==1.3.10 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
-
安装apex
git clone https://github.com/NVIDIA/apex pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
-
安装mmdetection,我使用的是SwinTransformer/Swin-Transformer-Object-Detection这个版本的
git clone https://github.com/SwinTransformer/Swin-Transformer-Object-Detection.git pip install -v -e .
-
安装mmpycocotools
pip uninstall pycocotools pip install mmpycocotools
测试的代码如下,当时我主要是想测试一下mmdetection在dota数据集上的表现:
from mmcv import Config
from mmdet.datasets import build_dataset
from mmdet.models import build_detector
from mmdet.apis import train_detector
from mmdet.apis import set_random_seed
import os.path as osp
import mmcv
import numpy as np
from mmdet.datasets.builder import DATASETS
from mmdet.datasets.custom import CustomDataset
import warnings
# warnings.filterwarnings('ignore')
# 目前的解决方案,要不重写一个dataset的类,要不统一都弄成coco的形式。
cfg = Config.fromfile('./configs/fcos/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py')
# todo 1. 定义数据集
# 目前这个数据有大问题,咱首先得处理coco格式,然后得写个带可视化得api方便查看,奶奶得。
cfg.dataset_type = 'CocoDataset' # todo 数据集格式
cfg.classes = ('plane', 'baseball-diamond', 'bridge', 'ground-track-field', 'small-vehicle', 'large-vehicle',
'ship', 'tennis-court', 'basketball-court', 'storage-tank',
'soccer-ball-field', 'roundabout', 'harbor', 'swimming-pool', 'helicopter', 'container-crane',) # todo 类名
data_images = '/home/lyc/data/scm/remote/dota1.5hbb/PNGImages/images/' # todo 数据集根路径
cfg.data.train.ann_file = '/home/lyc/data/scm/remote/dota1.5hbb/dota_train.json' # todo json文件路径
cfg.data.val.ann_file = '/home/lyc/data/scm/remote/dota1.5hbb/dota_val.json' # todo 验证集json文件路径
cfg.data.test.ann_file = '/home/lyc/data/scm/remote/dota1.5hbb/dota_val.json' # todo 测试集json文件路径
cfg.data.train.type = cfg.dataset_type
cfg.data.val.type = cfg.dataset_type
cfg.data.test.type = cfg.dataset_type
cfg.data.train.classes = cfg.classes
cfg.data.val.classes = cfg.classes
cfg.data.test.classes = cfg.classes
cfg.data.train.img_prefix = data_images #
cfg.data.val.img_prefix = data_images
cfg.data.test.img_prefix = data_images
cfg.data.samples_per_gpu = 4 # Batch size of a single GPU used in testing 默认是8x2
cfg.data.workers_per_gpu = 1 # Worker to pre-fetch data for each single GPU
# *************** transform **************
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=(1024, 1024),
# multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[102.9801, 115.9465, 122.7717],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1024, 1024),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[102.9801, 115.9465, 122.7717],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
cfg.data.train.pipeline = cfg.train_pipeline
cfg.data.val.pipeline = cfg.test_pipeline
cfg.data.test.pipeline = cfg.test_pipeline
# modify num classes of the model in box head
cfg.model.bbox_head.num_classes = len(cfg.classes)
#cfg.load_from = '../checkpoints/resnet50_caffe-788b5fa3.pth'
cfg.work_dir = '../tutorial_exps/2-dota_fcos_1024_backbone'
# The original learning rate (LR) is set for 8-GPU training.
# We divide it by 8 since we only use one GPU.
cfg.optimizer.lr = 0.02 / 8
cfg.lr_config.warmup = None
cfg.log_config.interval = 10
# Change the evaluation metric since we use customized dataset.
# cfg.evaluation.metric = 'mAP'
cfg.evaluation.metric = 'bbox'
cfg.evaluation.save_best = 'bbox_mAP'
# We can set the evaluation interval to reduce the evaluation times
cfg.evaluation.interval = 1
# We can set the checkpoint saving interval to reduce the storage cost
cfg.checkpoint_config.interval = 12
# Set seed thus the results are more reproducible
cfg.seed = 0
set_random_seed(0, deterministic=False)
# cfg.gpu_ids = range(1)
cfg.gpu_ids = (0,)
# We can initialize the logger for training and have a look
# at the final config used for training
print(f'Config:\n{cfg.pretty_text}')
# 保存模型的各种参数(一定要记得嗷)
cfg.dump(F'{cfg.work_dir}/customformat_fcos.py')
# 训练主要进程
# Build dataset
datasets = [build_dataset(cfg.data.train)]
print(cfg.data.train)
print(datasets[0])
print(datasets[0].CLASSES)
# Build the detector
model = build_detector(
cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg'))
print("数据集加载完毕!")
# Add an attribute for visualization convenience
model.CLASSES = datasets[0].CLASSES
# Create work_dir
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
train_detector(model, datasets, cfg, distributed=False, validate=True)
!!!成功下载权重文件
附上第一轮的结果,好像不会太离谱了
# 改之前
DONE (t=8.48s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.020
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.001
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.001
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.005
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.009
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.035
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.035
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.035
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.010
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.030
# 改了之后
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.076
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.187
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.049
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.008
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.092
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.101
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.167
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.167
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.167
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.032
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.182
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.246
但是有新的bug,后面在解决,应该是配置文件的问题
附录
swintransformer挺牛的,大家可以自己试试看
最后附上mmdetection和mmsegmnetation的对照表。
标签:IoU,area,cfg,mmsegmentation,type,mmdetection,data,Average,加载
来源: https://blog.csdn.net/ECHOSON/article/details/120659725
本站声明:
1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。