其他分享
首页 > 其他分享> > ES是什么?看完这篇就不要再问这种低级问题了!

ES是什么?看完这篇就不要再问这种低级问题了!

作者:互联网

最近在给公司其他部门的同事输出关于 ElasticSearch (下面都简称ES) 的培训,内容从入门到(精通/放弃),反响还不错,有望在年底再冲一波绩效,哈哈。所以,独乐乐不如众乐乐,我整理了下大纲,脱敏了一些内容,发出来给大家一起学习一下,先从最基础的开始,后面会一步步深入,欢迎持续关注。
言归正传,要说ES那不得不先提一下 Apache Lucene,Lucene 是当下最先进、高性能、全功能的搜索引擎库。而ES是用 Java 编写的,它的内部使用 Lucene 做索引与搜索,但是它的目的是使全文检索变得简单, 通过隐藏 Lucene 的复杂性,取而代之的提供一套简单一致的 RESTful API


发展历程先来看看官网提到的一个有意思的小故事

许多年前,一个刚结婚的名叫 Shay Banon 的失业开发者,跟着他的妻子去了伦敦,他的妻子在那里学习厨师。 在寻找一个赚钱的工作的时候,为了给他的妻子做一个食谱搜索引擎,他开始使用 Lucene 的一个早期版本。 
直接使用 Lucene 是很难的,因此 Shay 开始做一个抽象层,Java 开发者使用它可以很简单的给他们的程序添加搜索功能。 他发布了他的第一个开源项目 Compass。

后来 Shay 获得了一份工作,主要是高性能,分布式环境下的内存数据网格。这个对于高性能,实时,分布式搜索引擎的需求尤为突出, 他决定重写 Compass,把它变为一个独立的服务并取名 Elasticsearch。 第一个公开版本在2010年2月发布,从此以后,Elasticsearch 已经成为了 Github 上最活跃的项目之一,他拥有超过300名 contributors。 一家公司已经开始围绕 Elasticsearch 提供商业服务,并开发新的特性,但是,Elasticsearch 将永远开源并对所有人可用。 据说,Shay 的妻子还在等着她的食谱搜索引擎…

Elasticsearch 后来作为一家公司(Elastic公司)进行运作,定位为数据搜索和分析平台。在2014年6月获得7000万美元融资,累积融资过亿美元。ES现在可以与Java、Ruby、Python、PHP、Perl、.NET等多种客户端集成。也可与Hadoop、Spark等大数据分析平台进行集成,功能十分强大。基于Elasticsearch衍生出了一系列开源软件,统称为 Elatic Stack。包括了大家熟悉的ELK(ElasticSearch/Logstash/Kibana)等。


ES的特性和场景1. 特性分布式:横向扩展非常灵活全文检索:基于lucene的强大的全文检索能力;近实时搜索和分析:数据进入ES,可达到近实时搜索,还可进行聚合分析高可用:容错机制,自动发现新的或失败的节点,重组和重新平衡数据模式自由:ES的动态mapping机制可以自动检测数据的结构和类型,创建索引并使数据可搜索。RESTful API:JSON + HTTP2. 场景


相关概念对比 RDBMS
image


ES的核心概念

1. 节点(Node)一个运行中的 Elasticsearch 实例称为一个节点,而集群是由一个或者多个拥有相同cluster.name配置的节点组成, 它们共同承担数据和负载的压力。ES集群中的节点有三种不同的类型,一个节点可以充当一个或多个角色,默认三个角色都有:

2. 分片(Shard)一个索引中的数据保存在多个分片中,相当于水平分表。一个分片便是一个Lucene 的实例,它本身就是一个完整的搜索引擎。我们的文档被存储和索引到分片内,但是应用程序是直接与索引而不是与分片进行交互。

ES实际上就是利用分片来实现分布式。分片是数据的容器,文档保存在分片内,分片又被分配到集群内的各个节点里。当你的集群规模扩大或者缩小时, ES会自动的在各节点中迁移分片,使得数据仍然均匀分布在集群里。
集群规模扩大或者缩小时, ES会自动的在各节点中迁移分片,使得数据仍然均匀分布在集群里。

标签:这篇,低级,Lucene,Elasticsearch,分片,数据,节点,ES
来源: https://blog.csdn.net/m0_62558678/article/details/120634949