复赛准备 - 最短路径问题(dijkstra)
作者:互联网
#include "iostream"
#include "vector"
#include "cmath"
#include "queue"
using namespace std;
const int N = 1e3;
const double INF = 1e10;
struct dist{
int x;
double l;
};
priority_queue<dist> qu;
bool operator < (const dist d1,const dist d2){
return d1.l > d2.l;
}
struct edge{
int to;//指向哪个点
double w;//权值:长度
};
vector<edge> graph[N];
struct node{
int x,y;
}nodes[N];
int n,m,s,t;//n个节点,m条边
double dis[N];
int flag[N];
void addEdge(int from,int to);
void dijkstra(int x);
int main(){
cin>>n;
int x,y;
for(int i=1;i<=n;i++){
cin>>x>>y;
nodes[i].x = x;
nodes[i].y = y;
}
cin>>m;
int from,to;
for(int i = 1;i <= m;i++){
cin>>from>>to;
addEdge(from,to);
}
// //遍历看
// for(int i = 1; i <=n ;i++){
// cout<<"节点"<<i<<":"<<endl;
// for(int j = 0;j < graph[i].size();j ++){
// cout<<"("<<graph[i][j].to<<" "<<graph[i][j].w<<") ";
// }
// cout<<endl;
// }
cin>>s>>t;
dijkstra(s);
printf("%.2lf",dis[t]);
return 0;
}
void addEdge(int from,int to){
//从from到to的一条边;从to到from的边
double l = sqrt((nodes[from].x - nodes[to].x) * (nodes[from].x - nodes[to].x) + (nodes[from].y - nodes[to].y) * (nodes[from].y - nodes[to].y)) ;
graph[from].push_back({to,l});
graph[to].push_back({from,l});
}
void dijkstra(int x){
//初始化dis,flag
for(int i=0;i<=n;i++){
dis[i] = INF;
}
dis[x] = 0;
qu.push({x,0});
//O(n^2) - > O(nlogn)
while(!qu.empty()){//O(n)
// //打擂台找最小的点
// int p = 0;
// for(int j = 1; j <= n;j ++){//O(n) - >logn
// if(!flag[j] && dis[j] < dis[p]){
// p = j;
// }
// }
dist mn = qu.top();qu.pop();
if(flag[mn.x]){
continue;
}
int p = mn.x;
//优化操作
// if(dis[p] == 10000){
// break;
// }
flag[p] = 1;
//松弛操作
for(int j = 0;j < graph[p].size(); j ++){
int to = graph[p][j].to;
double w = graph[p][j].w;
if(dis[p] + w < dis[to]){
dis[to] = dis[p] + w;
qu.push({to,dis[to]});//优化版本
}
}
}
}
标签:int,graph,flag,最短,dijkstra,double,nodes,复赛,dis 来源: https://blog.csdn.net/TFT_ren/article/details/120618897