libusb
作者:互联网
一 libusb 介绍
libusb 设计了一系列的外部API
为应用程序所调用,通过这些API应用程序可以操作硬件,从libusb的源代码可以看出,这些API 调用了内核的底层接口,和kernel
driver中所用到的函数所实现的功能差不多,只是libusb更加接近USB 规范。使得libusb的使用也比开发内核驱动相对容易的多。
Libusb 的编译安装请查看Readme,这里不做详解
二 libusb 的外部接口
2.1 初始化设备接口
这些接口也可以称为核心函数,它们主要用来初始化并寻找相关设备。
usb_init
函数定义: void usb_init(void);
从函数名称可以看出这个函数是用来初始化相关数据的,这个函数大家只要记住必须调用就行了,而且是一开始就要调用的.
usb_find_busses
函数定义: int usb_find_busses(void);
寻找系统上的usb总线,任何usb设备都通过usb总线和计算机总线通信。进而和其他设备通信。此函数返回总线数。
usb_find_devices
函数定义: int usb_find_devices(void);
寻找总线上的usb设备,这个函数必要在调用usb_find_busses()后使用。以上的三个函数都是一开始就要用到的,此函数返回设备数量。
usb_get_busses
函数定义: struct usb_bus *usb_get_busses(void);
这个函数返回总线的列表,在高一些的版本中已经用不到了,这在下面的实例中会有讲解
2.2 操作设备接口
usb_open
函数定义: usb_dev_handle *usb_open(struct *usb_device dev);
打开要使用的设备,在对硬件进行操作前必须要调用usb_open 来打开设备,这里大家看到有两个结构体usb_dev_handle 和
usb_device 是我们在开发中经常碰到的,有必要把它们的结构看一看。在libusb 中的usb.h和usbi.h中有定义。
这里我们不妨理解为返回的 usb_dev_handle 指针是指向设备的句柄,而行参里输入就是需要打开的设备。
usb_close
函数定义: int usb_close(usb_dev_handle *dev);
与usb_open相对应,关闭设备,是必须调用的, 返回0成功,Libusb库的使用
使用libusb之前你的linux系统必须装有usb文件系统,这里还介绍了使用hiddev设备文件来访问设备,目的在于不仅可以比较出usb的易用性,还提供了一个转化成libusb驱动的案例。
3.1 find设备
任何驱动第一步首先是寻找到要操作的设备,我们先来看看HID驱动是怎样寻找到设备的。我们假设寻找设备的函数Device_Find(注:代码只是为了方便解说,不保证代码的健全)
int Device_Find()
{
char dir_str[100];
char hiddev[100];
DIR dir;
memset (dir_str, 0 , sizeof(dir_str));
memset (hiddev, 0 , sizeof(hiddev));
dir=opendir("/dev/usb/hid");
if(dir){
sprintf(dir_str,"/dev/usb/hid/");
closedir(dir);
}else{
sprintf(dir_str,"/dev/usb/");
}
for(i = 0; i
sprintf(hiddev, "%shiddev%d", dir_str,i);
fd = open(hiddev, O_RDWR);
if(fd > 0) {
ioctl(fd, HIDIOCGDEVINFO, &info);
if(info.vendor== VENDOR_ID && info.product== PRODUCT_ID) {
device_num++;
}
close(fd);
}
}
return device_num;
}
我们再来看libusb是如何来寻找和初始化设备
int Device_Find()
{
struct usb_bus *busses;
int device_num = 0;
device_num = 0;
usb_init();
usb_find_busses();
usb_find_devices();
busses = usb_get_busses();
struct usb_bus *bus;
for (bus = busses; bus; bus = bus->next) {
struct usb_device *dev;
for (dev = bus->devices; dev; dev = dev->next) {
if(dev->descriptor.idVendor==VENDOR_ID&& dev->descriptor.idProduct == PRODUCT_ID) {
device_num++;
}
}
}
return device_num;
}
注:在新版本的libusb中,usb_get_busses就可以不用了,这个函数是返回系统上的usb总线链表句柄
这里我们直接用usb_busses变量,这个变量在usb.h中被定义为外部变量
所以可以直接写成这样:
struct usb_bus *bus;
for (bus = usb_busses; bus; bus = bus->next) {
struct usb_device *dev;
for (dev = bus->devices; dev; dev = dev->next) {
}
}
3.2 打开设备
假设我们定义的打开设备的函数名是device_open,
int Device_Open()
{
int handle;
handle = open(“hiddev0”, O_RDONLY);
}
int Device_Open()
{
struct usb_device* udev;
usb_dev_handle* device_handle;
device_handle = usb_open(udev);
}
3.3 读写设备和操作设备
假设我们的设备使用控制传输方式,至于批处理传输和中断传输限于篇幅这里不介绍
我们这里定义三个函数,Device_Write, Device_Read, Device_Report
Device_Report 功能发送接收函数
Device_Write 功能写数据
Device_Read 功能读数据
Device_Write和Device_Read调用Device_Report发送写的信息和读的信息,开发者根据发送的命令协议来设计,我们这里只简单实现发送数据的函数。
假设我们要给设备发送72字节的数据,头8个字节是报告头,是我们定义的和设备相关的规则,后64位是数据。
HID驱动的实现(这里只是用代码来有助理解,代码是伪代码)
int Device_Report(int fd, unsigned char *buffer72)
{
int ret;
int index;
unsigned char send_data[72];
unsigned char recv_data[72];
struct hiddev_usage_ref uref;
struct hiddev_report_info rinfo;
ret = ioctl(fd, HIDIOCINITREPORT, 0);
if( ret !=0) {
return NOT_OPENED_DEVICE;
}
for(index = 0; index
uref.report_type = HID_REPORT_TYPE_FEATURE;
uref.report_id = HID_REPORT_ID_FIRST;
uref.usage_index = index;
uref.field_index = 0;
uref.value = send_data[index];
ioctl(fd, HIDIOCGUCODE, &uref);
ret=ioctl(fd, HIDIOCSUSAGE, &uref);
if(ret != 0 ){
return UNKNOWN_ERROR;
}
}
rinfo.report_type = HID_REPORT_TYPE_FEATURE;
rinfo.report_id = HID_REPORT_ID_FIRST;
rinfo.num_fields = 1;
ret=ioctl(fd, HIDIOCSREPORT, &rinfo);
if(ret != 0) {
return WRITE_REPORT;
}
ret = ioctl(fd, HIDIOCINITREPORT, 0);
for(index = 0; index
uref.report_type = HID_REPORT_TYPE_FEATURE;
uref.report_id = HID_REPORT_ID_FIRST;
uref.usage_index = index;
uref.field_index = 0;
ioctl(fd, HIDIOCGUCODE, &uref);
ret = ioctl(fd, HIDIOCGUSAGE, &uref);
if(ret != 0 ) {
return UNKNOWN_ERROR;
}
recv_data[index] = uref.value;
}
memcpy(buffer72, recv_data, 72);
return SUCCESS;
}
libusb驱动的实现
int Device_Report(int fd, unsigned char *buffer72)
{
usb_dev_handle* Device_handle;
unsigned char send_data[72];
unsigned char recv_data[72];
int send_len;
int recv_len;
memset(send_data, 0 , sizeof(send_data));
memset(recv_data, 0 , sizeof(recv_data));
Device_handle = (usb_dev_handle*)(g_list[fd].device_handle);
if (Device_handle == NULL) {
return NOT_OPENED_DEVICE;
}
usb_claim_interface(Device_handle, 0);
send_len = usb_control_msg(Device_handle,
USB_ENDPOINT_OUT + USB_TYPE_CLASS + USB_RECIP_INTERFACE,
HID_REPORT_SET,
0x300,
0,
send_data, 72, USB_TIMEOUT);
if (send_len
return WRITE_REPORT;
}
if (send_len != 72) {
return send_len;
}
recv_len = usb_control_msg(Device_handle,
USB_ENDPOINT_IN + USB_TYPE_CLASS + USB_RECIP_INTERFACE,
HID_REPORT_GET,
0x300,
0,
recv_data, 72, USB_TIMEOUT);
if (recv_len
printf("failed to retrieve report from USB device!\n");
return READ_REPORT;
}
if (recv_len != 72) {
return recv_len;
}
usb_release_interface(RY2_handle, 0);
memcpy(buffer72, recv_data, 72);
return SUCCESS;
}
3.4 关闭设备
假设我们定义的关闭设备的函数名是Device_Close()
int Device_Close()
{
int handle;
handle = open(“hiddev0”, O_RDONLY);
close( handle );
}
int Device_Close()
{
struct usb_device* udev;
usb_dev_handle* device_handle;
device_handle = usb_open(udev);
usb_close(device_handle);
}
libusb的驱动框架
前面我们看了些主要的libusb函数的使用,这里我们把前面的内容归纳下:
一般的驱动应该都包含如下接口:
Device_Find();
Device_Open();
Device_Write();
Device_Read();
Device_Close();
具体代码如下:
#include
typedef struct
{
struct usb_device* udev;
usb_dev_handle* device_handle;
} device_descript;
#define USB_TIMEOUT 10000
#define VENDOR_ID 0xffff
#define PRODUCT_ID 0xffff
#define DEVICE_MINOR 16
int g_num;
device_descript g_list[ DEVICE_MINOR ];
int Device_Find()
{
struct usb_bus *bus;
struct usb_device *dev;
g_num = 0;
usb_find_busses();
usb_find_devices();
for (bus = usb_busses; bus; bus = bus->next) {
for (dev = bus->devices; dev; dev = dev->next) {
if(dev->descriptor.idVendor==VENDOR_ID&& dev->descriptor.idProduct == PRODUCT_ID) {
if (g_num
g_list[g_num].udev = dev;
g_num ++;
}
}
}
}
return g_num;
}
int Device_Open()
{
if(g_list[g_num].udev != NULL) {
g_list[g_num].device_handle = usb_open(g_list[g_num].udev);
}
}
int DeviceWite(int handle)
{
}
int DeviceOpen(int handle)
{
}
void Device_close(int handle)
{
}
小结
到此,使用libusb进行驱动开发介绍完了,通过对库所提供的API的使用可以体会到libusb的易用性。
将request, requesttype, value, index, size加工成usb_ctrlrequest,然后调用usb_internal_control_msg()
dev 参数dev指向目标设备的usb_device数据结构
pipe pipe是个32位无符号整数,其最高两位表示传输的类型(实时/中断/控制/批量),其余各位包括对方的端口号以及设备号,以及设备是否为全速(或者低度)。
requesttype requesttype其最高位表示传输的方向,最低5位则表明传输终极对象的类别(设备/接口/端口/其他)
index, request, value index则指明具体的单元,这就是终极的操作对象。针对这个操作对象,request说明了需要进行的具体操作,而value则是参数
data, size 如果有更多的数据需要传递(读/写),则通过缓冲区data进行,其大小为size。这些都是从用户空间传下来的参数,而传输的目的正是要把这些信息发送给目标设备
timeout 参数timeout表示愿意睡眠等待传输完成的时间
------------------------------------------------------
int usb_control_msg(
struct usb_device *dev, unsigned int pipe,
__u8-request,__u8 requesttype,__u16 value,
__u16 index, void *data, __u16 size,
int timeout)
{
struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
int ret;
if (!dr)
return -ENOMEM;
dr->bRequestType= requesttype;
dr->bRequest = request;
dr->wValue = cpu_to_le16p(&value);
dr->wIndex = cpu_to_le16p(&index);
dr->wLength = cpu_to_le16p(&size);
ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
kfree(dr);
return ret;
}
-----------------------------------
QT USB技术(一)基础
https://blog.51cto.com/u_11496263/1867516
转载自:QT USB技术(一)基础_WZM3558862_51CTO博客
标签:handle,usb,int,dev,device,libusb,Device 来源: https://www.cnblogs.com/tingtaishou/p/15355246.html