#结论#洛谷 3199 [HNOI2009]最小圈
作者:互联网
题目
求有向图最小平均权值回路。
\(n\leq 3*10^3,m\leq 10^4\)
分析
设 \(f_k(x)\) 表示从点 \(x\) 出发恰好走 \(k\) 条边的最短路,
那么答案就是 \(\min_{x=1}^n\max_{k=0}^{n-1}\frac{f_n(x)-f_k(x)}{n-k}\)
所以直接 \(O(nm)\) 就可以了,证明见_rqy dalao的博客
0/1分数规划的方法理论应该会T这里就不写了,不过只要任意点都可以作为起点那么初始值都为0就可以了
代码
#include <cstdio>
#include <cctype>
#include <cstring>
#define rr register
using namespace std;
const int N=3411; typedef double db;
int as[N],n,m; db f[N][N],ans=1e15;
struct node{int y; db w; int next;}e[N*3];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void Max(db &x,db y){x=x>y?x:y;}
inline void Min(db &x,db y){x=x<y?x:y;}
signed main(){
n=iut(); m=iut();
for (rr int i=1;i<=m;++i){
rr int x=iut(),y=iut();
rr db w; scanf("%lf",&w);
e[i]=(node){y,w,as[x]},as[x]=i;
}
for (rr int i=1;i<=n;++i){
for (rr int x=1;x<=n;++x) f[i][x]=1e15;
for (rr int x=1;x<=n;++x)
if (f[i-1][x]!=1e15)
for (rr int j=as[x];j;j=e[j].next)
Min(f[i][e[j].y],f[i-1][x]+e[j].w);
}
for (rr int i=1;i<=n;++i){
rr db now=-1e15;
for (rr int j=0;j<n;++j)
Max(now,(f[n][i]-f[j][i])/(n-j));
Min(ans,now);
}
return !printf("%.8lf",ans);
}
0/1分数规划代码
#include <cstdio>
#include <cctype>
#include <cstring>
#define rr register
using namespace std;
const int N=3011; int as[N],n,m; bool v[N]; double dis[N];
struct node{int y; double w; int next;}e[N*5];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline bool dfs(int x,double mid){
v[x]=1;
for (rr int i=as[x];i;i=e[i].next)
if (dis[e[i].y]>dis[x]+e[i].w-mid){
if (v[e[i].y]) return 0;
dis[e[i].y]=dis[x]+e[i].w-mid;
if (!dfs(e[i].y,mid)) return 0;
}
v[x]=0;
return 1;
}
signed main(){
n=iut(); m=iut();
for (rr int i=1;i<=m;++i){
rr int x=iut(),y=iut();
rr double w; scanf("%lf",&w);
e[i]=(node){y,w,as[x]},as[x]=i;
}
for (rr int i=1;i<=n;++i)
e[i+m]=(node){i,0,as[n+1]},as[n+1]=m+i;
rr double l=-5000,r=5000;
while (l+1e-9<r){
rr double mid=(l+r)/2;
for (rr int i=1;i<=n+1;++i) dis[i]=v[i]=0;
if (dfs(n+1,mid)) l=mid;
else r=mid;
}
return !printf("%.8lf",l);
}
标签:洛谷,rr,int,db,ans,isdigit,HNOI2009,include,3199 来源: https://www.cnblogs.com/Spare-No-Effort/p/15348539.html