其他分享
首页 > 其他分享> > 网络中的网络(NiN)

网络中的网络(NiN)

作者:互联网

         NiN使用窗口形状为 11×1111×11、5×55×5 和 3×33×3的卷积层,输出通道数量与 AlexNet 中的相同。 每个 NiN 块后有一个最大汇聚层,池化窗口形状为 3×33×3,步幅为 2

        NiN 和 AlexNet 之间的一个显著区别是 NiN 完全取消了全连接层。 相反,NiN 使用一个 NiN块,其输出通道数等于标签类别的数量。最后放一个 全局平均汇聚层(global average pooling layer),生成一个多元逻辑向量(logits)。NiN 设计的一个优点是,它显著减少了模型所需参数的数量。然而,在实践中,这种设计有时会增加训练模型的时间。

import torch
from torch import nn
from d2l import torch as d2l


def nin_block(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())
net = nn.Sequential(
    nin_block(1, 96, kernel_size=11, strides=4, padding=0),
    nn.MaxPool2d(3, stride=2),
    nin_block(96, 256, kernel_size=5, strides=1, padding=2),
    nn.MaxPool2d(3, stride=2),
    nin_block(256, 384, kernel_size=3, strides=1, padding=1),
    nn.MaxPool2d(3, stride=2),
    nn.Dropout(0.5),
    # 标签类别数是10
    nin_block(384, 10, kernel_size=3, strides=1, padding=1),
    nn.AdaptiveAvgPool2d((1, 1)),
    # 将四维的输出转成二维的输出,其形状为(批量大小, 10)
    nn.Flatten())

小结

标签:kernel,NiN,nn,网络,channels,out,size
来源: https://blog.csdn.net/AlanxZhang/article/details/120525808