深度学习框架Caffe学习系列(2):DarkNet 转战 Caffe 经验汇总
作者:互联网
--darknet 转战 caffe--
-
darknet的cfg文件转换成caffe的prototxt文件
> 卷积层重写:
# darknet 的cfg文件
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
# caffe的prototxt书写
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 32
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "gaussian"
std: 0.0001
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "batch_norm1"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
batch_norm_param {
use_global_stats: false
}
include {
phase: TRAIN
}
}
layer {
name: "batch_norm1"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
batch_norm_param {
use_global_stats: true
}
include {
phase: TEST
}
}
layer {
name: "scale1"
type: "Scale"
bottom: "conv1"
top: "conv1"
scale_param {
bias_term: true
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
relu_param{
negative_slope: 0.1
}
}
- 为什么要分成BatchNorm和Scale两个层: 博客1,博客2,ResNet.prototxt的书写
标签:layer,bottom,DarkNet,param,学习,conv1,Caffe,type,top 来源: https://blog.csdn.net/qipeng_master/article/details/85113415