其他分享
首页 > 其他分享> > 剑指 Offer 14- I. 剪绳子

剑指 Offer 14- I. 剪绳子

作者:互联网

剑指 Offer 14- I. 剪绳子

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m-1] 。请问 k[0]k[1]...*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

示例 1:

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1

示例 2:

输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36

提示:

一、动态规划

首先使用动态规划解决问题,最重要的就是理解dp数组的含义。 此处的dp[i] 表示长度为i的绳子剪成m段后的最大乘积。初始化dp[2] = 1 表示如果一个绳子长度为2必然只能分成两段长度为1的绳子,两者的乘积为1。

  1. 然后尝试对绳子进行分割,如果只剪掉长度为1,对最后的乘积无任何增益,所以从长度为2开始剪,代码中的j就是表示尝试剪的长度。
  2. 剪下一段后,剩余部分可以剪也可以不剪。如果不剪则得到的长度乘积为 j * (i - j) 。如果剪得到的长度为j * dp[i - j]两者取最大值
  3. 不断修改剪的长度j (j范围为[2, i -1])。从所有结果中找到最大值即为dp[i]的结果。
  4. 从而有状态转移方程dp[i] = max(dp[i], max(j * (i - j), j * dp[i - j]))
class Solution {
    public int cuttingRope(int n) {   
        // dp[i]表示长度为i的绳子被剪成m段,每段乘机的最大值
        int[] dp = new int[n+1];
        // 因为m>1,所以dp[2] = 1而不是2
        dp[2] = 1;
        // i表示绳子长度
        for (int i=3;i<=n;++i){
            // i-j >= 2。j代表第一次剪掉的长度,剪掉1没用,所以从2开始,剩余的长度i-j怎么减直接取dp[i-j]
            for (int j=1;j<=i-2;++j){
                // 这里因为m>1,所以dp[2] = 1而不是2,dp[3]不能是dp[2] * 1,这样答案是1,错误.
                // 因此下面要添加Math.max(dp[i-j], i-j)。
                dp[i] = Math.max(Math.max(dp[i-j], i-j) * j, dp[i]);
            }
        }
        return dp[n];
    }
}

二、贪心算法

这个做题思路直接引用K神吧,直接给跪了。

算法流程:

  1. 当 n ≤3 时,按照规则应不切分,但由于题目要求必须剪成 m>1 段,因此必须剪出一段长度为 11 的绳子,即返回 n - 1。
  2. 当 n>3时,求 nn 除以 33 的 整数部分 aa 和 余数部分 bb (即 n = 3a + b ),并分为以下三种情况:
    1. 当 b = 0 时,直接返回 3^a ;
    2. 当 b = 1时,要将一个 1 + 3转换为 2+2,因此返回 3^{a-1} ×4;
    3. 当 b = 2时,返回 3^a × 2。
class Solution {
    public int cuttingRope(int n) {
        if(n <= 3) return n - 1;
        int a = n / 3, b = n % 3;
        if(b == 0) return (int)Math.pow(3, a);
        if(b == 1) return (int)Math.pow(3, a - 1) * 4;
        return (int)Math.pow(3, a) * 2;
    }
}

其实K神还有更详细的求导过程和推论过程,建议点参考链接详细再看看。

参考链接:https://leetcode-cn.com/problems/jian-sheng-zi-lcof/solution/mian-shi-ti-14-i-jian-sheng-zi-tan-xin-si-xiang-by/

标签:14,Offer,int,max,绳子,长度,dp,乘积
来源: https://www.cnblogs.com/RainsX/p/15242117.html