其他分享
首页 > 其他分享> > Matrix Gym - 103145A “红旗杯”第十五届

Matrix Gym - 103145A “红旗杯”第十五届

作者:互联网

在这里插入图片描述
在这里插入图片描述

大致题意:给你一个n * n 的矩阵填充了[1 , n2] 的数,每一行都会贡献一个最小值ai,S = {a1,a2,…,an} ∩ {1,2,…,n} 求ΣS

一行的最小值是1~n中的数时,才对答案有贡献。
首先从1~n枚举一行的最小值 记为i
这一行剩余n-1个数都要比i大,所以有C(n * n - i ,n-1)种选法
然后把这一行的n个数全排列 n!
剩余的n * n - n个数填到剩下的n-1行中,随意排列 共(n * n - n)!种排法
把之前带有i的那一行插进去,组成n行 共n种方法

然后这个排法保证最小值 i 对答案有贡献 即+1
所以有多少排法 答案就加多少

对于每一个 i ,排法有: C(n * n - i ,n-1)* n! * (n * n - n)!* n
则总排法:

for (int i = 1; i <= n; i ++ )
		{
			int now = C(n * n - i , n - 1) * f[n] % mod * f[n * n - n] % mod * n % mod;///f数组是阶乘数组
			res = (res + now) % mod;
		}

标签:排法,Matrix,int,个数,Gym,103145A,一行,最小值,mod
来源: https://blog.csdn.net/weixin_45719073/article/details/120165550