其他分享
首页 > 其他分享> > CF1105C 【Ayoub and Lost Array】

CF1105C 【Ayoub and Lost Array】

作者:互联网

简单\(\text{dp}\)
我们设\(\text{dp[i][j]}\)表示前\(\text{i}\)位除以\(\text{3}\)的余数为\(\text{j}\)的个数,那么可以明显的推出状态转移方程
\(\text{dp[i][0]=dp[i-1][1]*mod[2]+dp[i-1][2]*mod[1]+dp[i-1][0]*mod[0]}\)
\(\text{dp[i][1]=dp[i-1][0]*mod[1]+dp[i-1][1]*mod[0]+dp[i-1][2]*mod[2]}\)
\(\text{dp[i][2]=dp[i-1][1]*mod[1]+dp[i-1][2]*mod[0]+dp[i-1][0]*mod[2]}\)
其中\(\text{mod[i]}\)表示\(\text{l}\sim\text{r}\)除以\(\text{3}\)的余数为\(\text{i}\)的个数,不难发现这个是可以\(\text{O(1)}\)算的
接着我们就可以确定边界条件:
\(\text{dp[1][i]=mod[i]}\)

My Code:

#include <bits/stdc++.h>
#define int long long
const int MAXN = 1e5 * 2; 
const int P = 1e9 + 7;
using namespace std;
int n,m,i,j,k,l,r;
int dp[MAXN][3],mod[3];
signed main() {
    scanf("%d %d %d",&n,&l,&r);
    mod[0] = dp[1][0] = r / 3 - (l - 1) / 3;
    mod[1] = dp[1][1] = (r + 2) / 3 - (l + 1) / 3;
    mod[2] = dp[1][2] = (r + 1) / 3 - l / 3;
    for(int i = 2;i <= n;i++) {
        dp[i][0] = (dp[i - 1][0] * mod[0] + dp[i - 1][1] * mod[2] + dp[i - 1][2] * mod[1]) % P;
        dp[i][1] = (dp[i - 1][0] * mod[1] + dp[i - 1][1] * mod[0] + dp[i - 1][2] * mod[2]) % P;
        dp[i][2] = (dp[i - 1][0] * mod[2] + dp[i - 1][1] * mod[1] + dp[i - 1][2] * mod[0]) % P;
    }
    printf("%d\n",dp[n][0]);
    return 0;
}

标签:const,Ayoub,int,text,long,Array,CF1105C,dp,mod
来源: https://www.cnblogs.com/Sai0511/p/10360483.html