其他分享
首页 > 其他分享> > Luogu2495[SDOI2011]消耗战

Luogu2495[SDOI2011]消耗战

作者:互联网

题目描述

在一场战争中,战场由\(n\)岛屿和\(n-1\)个桥梁组成,保证每两个岛屿间有且仅有一条路径可达。现在,我军已经侦查到敌军的总部在编号为\(1\)的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望。已知在其他\(k\)个岛屿上有丰富能源,为了防止敌军获取能源,我军的任务是炸毁一些桥梁,使得敌军不能到达任何能源丰富的岛屿。由于不同桥梁的材质和结构不同,所以炸毁不同的桥梁有不同的代价,我军希望在满足目标的同时使得总代价最小。

侦查部门还发现,敌军有一台神秘机器。即使我军切断所有能源之后,他们也可以用那台机器。机器产生的效果不仅仅会修复所有我军炸毁的桥梁,而且会重新随机资源分布(但可以保证的是,资源不会分布到\(1\)号岛屿上)。不过侦查部门还发现了这台机器只能够使用\(m\)次,所以我们只需要把每次任务完成即可。

输入格式:

第一行一个整数\(n\),代表岛屿数量。

接下来\(n-1\)行,每行三个整数\(u\),\(v\),\(w\),代表\(u\)号岛屿和\(v\)号岛屿由一条代价为\(c\)的桥梁直接相连,保证\(1<=u,v<=n\)且\(1<=c<=100000\)。

第\(n+1\)行,一个整数\(m\),代表敌方机器能使用的次数。

接下来\(m\)行,每行一个整数\(ki\),代表第\(i\)次后,有\(ki\)个岛屿资源丰富,接下来\(k\)个整数\(h1,h2,…hk\),表示资源丰富岛屿的编号。

输出格式:

输出有\(m\)行,分别代表每次任务的最小代价。

【数据规模和约定】

对于\(10\%\)的数据,\(2<=n<=10,1<=m<=5,1<=ki<=n-1\)

对于\(20\%\)的数据,\(2<=n<=100,1<=m<=100,1<=ki<=min(10,n-1)\)

对于\(40\%\)的数据,\(2<=n<=1000,m>=1,sigma(ki)<=500000,1<=ki<=min(15,n-1)\)

对于\(100\%\)的数据,\(2<=n<=250000,m>=1,sigma(ki)<=500000,1<=ki<=n-1\)


题目中\(k\)的总数有\(500000\),显然虚树优化树形\(DP\).因为是第一次写虚树所以出了不少\(bug\),这里来总结一下怎么写虚树.

首先,你要能建立出树形\(DP\)的朴素模型

在此基础上,由于询问点数和有限,所以我们并不需要对每次询问都\(O(N)\)\(DP\)回答.这里我们进行一次\(DFS\)的预处理,只抽出有效信息的一颗浓缩的树.那么关键就在怎么把它抽出来了.

对这个题,我们可以记录一个根节点到每个节点的最窄部分.然后对询问点按照\(dfs\)序排序.排序过后,对每两个\(dfs\)序相邻节点求\(lca\)扔进要用的点里.(可以口胡得到:这样一定涵盖所有必要的\(LCA\))再按\(dfs\)序排一次序,然后就可以愉快地建树\(DP\)啦.

Code:

#include <bits/stdc++.h>
#define int long long
#define N 250010
using namespace std;

int n, m, k, u, v, w, cnt, val[N], head[N];

int ss[N << 1], sta[N << 1], deep[N], ff[N][22], done[N];

struct edge {
    int nxt, to, w;
}e[N << 1];

void add_edge (int from, int to, int val) {
    e[++cnt].nxt = head[from];
    e[cnt].to = to;
    e[cnt].w = val;
    head[from] = cnt;
}

int dfn[N], low[N], _dfn = 0;

void pre (int u, int fa) {
    dfn[u] = ++_dfn;
    deep[u] = deep[fa] + 1;
    ff[u][0] = fa;
    for (int i = 1; (1 << i) <= deep[u]; ++i) {
        ff[u][i] = ff[ff[u][i - 1]][i - 1];
    }
    for (int i = head[u]; i; i = e[i].nxt) {
        int v = e[i].to;
        if (v != fa) {
            val[v] = min (val[u], e[i].w);
            pre (v, u);
            //  printf ("val[%lld] = min (%lld, %lld)\n", v, val[u], e[i].w);
        }
    }
    low[u] = _dfn;
}

bool cmp (const int &lhs, const int &rhs) {
    return dfn[lhs] < dfn[rhs];
}

int lca (int u, int v) {
    //  printf ("lca (%lld, %lld) = ", u, v);
    if (deep[u] < deep[v]) swap (u, v);
    for (int i = 20; i >= 0; --i) {
        if (deep[ff[u][i]] >= deep[v]) {
            u = ff[u][i];
        }
    }
    if (u == v) return u;
    for (int i = 20; i >= 0; --i) {
        if (ff[u][i] != ff[v][i]) {
            u = ff[u][i];
            v = ff[v][i];
        }
    }
    //printf ("%lld\n", ff[u][0]);
    return ff[u][0];
}

int get_ans (int u, int fa) {
    if (done [u]) return val[u];
    int res = 0;
    for (int i = head[u]; i; i = e[i].nxt) {
        int v = e[i].to;
        if (v != fa) {
            res += get_ans (v, u);
        }
    }
    return min (res, val[u]);
}

signed main () {
    //freopen ("2495.in", "r", stdin);
    scanf ("%lld", &n);
    for (int i = 1; i < n; ++i) {
        scanf ("%lld %lld %lld", &u, &v, &w);
        add_edge (u, v, w);
        add_edge (v, u, w);
    }
    memset (val, 0x3f, sizeof (val));
    pre (1, 0);
    /*
    for (int i = 1; i <= n; ++i) {
        printf ("node = %lld, val = %lld, low = %lld, dfn = %lld\n", i, val[i], low[i], dfn[i]);
    } */
    memset (head, 0, sizeof (head));
    scanf ("%lld", &m);
    for (int i = 1; i <= m; ++i) {
        //  printf ("ask = %lld\n", i);
        scanf ("%lld", &k);
        for (int j = 1; j <= k; ++j) {
            scanf ("%lld", &ss[j]);
            done[ss[j]] = true;
        }
        sort (ss + 1, ss + 1 + k, cmp);
        for (int j = k; j > 1; --j) {
            ss[++k] = lca (ss[j], ss[j - 1]);
        }
        ss[++k] = 1;
        sort (ss + 1, ss + 1 + k, cmp);
        k = unique (ss + 1, ss + 1 + k) - ss - 1;
        int top = 0; cnt = 0;
        for (int j = 1; j <= k; ++j) {
            while (top && low[sta[top]] < dfn[ss[j]]) --top;
            add_edge (sta[top], ss[j], val[j]);
            add_edge (ss[j], sta[top], val[j]);
            sta[++top] = ss[j];
        }
        get_ans (1, 0);
        //print_tree (1, 0);
        printf ("%lld\n", get_ans (1, 0));
        
        for (int j = 1; j <= k; ++j) {
            //printf ("dp[%lld] = %lld\n", ss[j], dp[ss[j]]);
            done[ss[j]] = false, head[ss[j]] = 0;
        }
        
    }
}

标签:ss,val,int,岛屿,Luogu2495,SDOI2011,ff,消耗战,lld
来源: https://www.cnblogs.com/maomao9173/p/10359469.html