题解 购物
作者:互联网
先考虑 \(n=1\) 的情况
此时 \(k \in [\lceil \frac{a}{2} \rceil, a]\) 都合法
尝试推广到 \(n=2\)
令 \(a<b\) ,首先发现可行的 \(k\) 的上界是 \(a+b\) ,可以用这个数减去不合法的
然后不合法区间就是 \([1, \lceil \frac{a}{2} \rceil-1]\) 及(如果 \(a < \lceil \frac{b}{2} \rceil\) ) \([a+1, \lceil \frac{b}{2} \rceil-1]\)
尝试推广到更高维,发现要让空缺区间尽量小,所以把 \(a\) 换成前面元素的前缀和
Code:
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 100010
#define ll long long
#define reg register int
//#define int long long
char buf[1<<21], *p1=buf, *p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
inline int read() {
int ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
}
int n;
ll a[N], tot, minn=(ll)(1e18);
namespace force{
bool check(ll k) {
int lim=1<<n; ll sum;
for (int s=1; s<lim; ++s) {
sum=0;
for (int i=0; i<n; ++i) if (s&(1<<i)) sum+=a[i+1];
if (sum>=k && sum<=k*2) return 1;
}
return 0;
}
void solve() {
int ans=0;
for (int i=1; i<=tot; ++i)
if (check(i)) ++ans;
printf("%d\n", ans);
exit(0);
}
}
namespace task1{
void solve() {
sort(a+1, a+n+1);
if ((ll)(ceil((1.0*a[1])/2.0-1e-8))-1 > 0) tot-=(ll)(ceil((1.0*a[1])/2.0-1e-8))-1;
for (int i=2; i<=n; ++i) {
//cout<<"i: "<<i<<endl;
//cout<<(ll)(ceil((1.0*a[i])/2.0-1e-8))-a[i-1]-1<<endl;
//cout<<((ll)(ceil((1.0*a[i])/2.0-1e-8)))<<' '<<a[i-1]<<endl;
if ((ll)(ceil((1.0*a[i])/2.0-1e-8))-a[i-1]-1 > 0) tot-=(ll)(ceil((1.0*a[i])/2.0-1e-8))-a[i-1]-1;
a[i]+=a[i-1];
}
//ll x=a[1], y=a[2];
//cout<<(ll)(ceil((1.0*x)/2.0-1e-8))-1<<' '<<(ll)(ceil((1.0*y)/2.0-1e-8))-x<<endl;
//if ((ll)(ceil((1.0*x)/2.0-1e-8))-1 > 0) tot-=(ll)(ceil((1.0*x)/2.0-1e-8))-1;
//if ((ll)(ceil((1.0*y)/2.0-1e-8))-x-1 > 0) tot-=(ll)(ceil((1.0*y)/2.0-1e-8))-x-1;
printf("%lld\n", tot);
//printf("%lld\n", tot-(ll)(ceil((1.0*minn)/(2.0)-1e-8))+1);
//cout<<"l: "<<(ll)(ceil((1.0*minn)/(2.0)-1e-8))<<endl;
exit(0);
}
}
signed main()
{
n=read();
for (int i=1; i<=n; ++i) a[i]=read(), tot+=a[i], minn=min(minn, a[i]);
//force::solve();
task1::solve();
return 0;
}
标签:1.0,题解,ll,购物,tot,ceil,1e,2.0 来源: https://www.cnblogs.com/narration/p/15174310.html