【题解】P2602[JZOI2010]数字计数
作者:互联网
【题解】[P2602ZJOI2010]数字计数
乍看此题,感觉直接从数字的位上面动手,感觉应该很容易。
但是仔细看数据范围,发现如果不利用计数原理,肯定会超时,考虑数码出现的特征:
\(A000\)到\(A999\),四位数中的\(A\)总共出现了\(999-0+1\)次。假设\(A\)在第\(k\)位上,那么它出现了\(10^{k-1}\)次。记录一下这个的前缀和。特别注意的是, 由\(dp(i)\rightarrow dp(i+1)\)时,要\(dp(i+1)=10dp(i)+10^{i-1}\),这是考虑到在第\(i+1\)位上增加一位会给\(i\)位带来\([0,9]\)总共10的贡献。那么\(A\)出现的次数就被我们确定了。
显然对于\(A233\)这样的数字,我们不能直接调用前面我们预处理的数组,因为它的值域是在\([233,995]\)的,而非\([000,999]\)。其实这样也好办,\(A\)出现的次数直接就是\(233-000+1=233+1\)。最后对于\(A\)特殊处理即可。
然后我们从处理四位数到了处理三位数了。就是一个一样的子问题。
#include<bits/stdc++.h>
using namespace std;
#define RP(t,a,b) for(register int t=(a),edd=(b);t<=edd;++t)
#define DRP(t,a,b) for(register int t=(a),edd=(b);t>=edd;--t)
#define ERP(t,a) for(register int t=head[a];t;t=e[t].nx)
#define Max(a,b) ((a)<(b)?(b):(a))
#define Min(a,b) ((a)<(b)?(a):(b))
#define midd register int mid=(l+r)>>1
#define TMP template < class ccf >
typedef long long ll;
#define endl '\n'
#define spc ' '
#define int ll
TMP inline ccf qr(ccf b){
char c=getchar();
int q=1;
ccf x=0;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=x*10+c-48,c=getchar();
return q==-1?-x:x;
}
const int maxn=15;
ll F,T;
int cntf,cntt;
int ans[maxn];
int ans2[maxn];
int num[maxn];
ll dp[maxn]={0,1};
ll ten[maxn]={1};
inline void dfs(int* d,ll data){
register int cnt=0;
while(data)
num[++cnt]=data%10,data/=10;
DRP(t,cnt,1){
RP(i,0,9)
d[i]+=dp[t-1]*num[t];
RP(i,0,num[t]-1)
d[i]+=ten[t-1];
register ll temp=0;
DRP(i,t-1,1)
temp=temp*10LL+num[i];
d[num[t]]+=temp+1;d[0]-=ten[t-1];
}
}
signed main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
ten[1]=10;
RP(t,2,14)
ten[t]=ten[t-1]*10ll,dp[t]=dp[t-1]*10ll+ten[t-1];
F=qr(1ll);
T=qr(1ll);
dfs(ans,T);
dfs(ans2,F-1LL);
RP(t,0,9)
cout<<ans[t]-ans2[t]<<spc;
cout<<endl;
return 0;
}
标签:10,int,题解,JZOI2010,233,P2602,ccf,dp,define 来源: https://www.cnblogs.com/winlere/p/10356171.html