其他分享
首页 > 其他分享> > 离散数学集训-day2(补档)

离散数学集训-day2(补档)

作者:互联网

作业1

(1)令 A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A}=\{1,2,5,8,9\} A={1,2,5,8,9},写出 A \mathbf{A} A 上的 “模 2 同余” 关系及相应的划分
R = { ( 1 , 1 ) , ( 1 , 5 ) , ( 1 , 9 ) , ( 2 , 2 ) , ( 2 , 8 ) , ( 5 , 1 ) , ( 5 , 5 ) , ( 5 , 9 ) , ( 8 , 2 ) , ( 8 , 8 ) , ( 9 , 1 ) , ( 9 , 5 ) , ( 9 , 9 ) } \mathbf{R}=\{(1,1),(1,5),(1,9),(2,2),(2,8),(5,1),(5,5),(5,9),(8,2),(8,8),(9,1),(9,5),(9,9)\} R={(1,1),(1,5),(1,9),(2,2),(2,8),(5,1),(5,5),(5,9),(8,2),(8,8),(9,1),(9,5),(9,9)}
P = { { 1 , 5 , 9 } , { 2 , 8 } } \mathcal{P}=\{\{1,5,9\},\{2,8\}\} P={{1,5,9},{2,8}}
(2)令 A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A}=\{1,2,5,8,9\} A={1,2,5,8,9}, 自己给定两个关系 R 1 \mathbf{R}_1 R1​和 R 2 \mathbf{R}_2 R2​
并计算 R 1 ∘ R 2 \mathbf{R}_1∘\mathbf{R}_2 R1​∘R2​, R 1 + \mathbf{R}_1^+ R1+​与 R 1 ∗ \mathbf{R}_1^* R1∗​
R 1 = { ( a , b ) ∈ A × A ∣ a / 2 = b / 2 } = { ( 2 , 2 ) , ( 2 , 8 ) , ( 8 , 2 ) , ( 8 , 8 ) } \mathbf{R}_1=\{(a, b) \in \mathbf{A} \times \mathbf{A} \mid a / 2=b / 2\}=\{(2,2),(2,8),(8,2),(8,8)\} R1​={(a,b)∈A×A∣a/2=b/2}={(2,2),(2,8),(8,2),(8,8)}
R 1 = { ( a , b ) ∈ A × A ∣ a = b m o d    3 } = { ( 2 , 2 ) , ( 2 , 5 ) , ( 2 , 8 ) , ( 5 , 2 ) , ( 5 , 5 ) , ( 5 , 8 ) , ( 8 , 2 ) , ( 8 , 5 ) , ( 8 , 8 ) } \mathbf{R}_1=\{(a, b) \in \mathbf{A} \times \mathbf{A} \mid a =b \mod 3\}=\{(2,2),(2,5),(2,8),(5,2),(5,5),(5,8),(8,2),(8,5),(8,8)\} R1​={(a,b)∈A×A∣a=bmod3}={(2,2),(2,5),(2,8),(5,2),(5,5),(5,8),(8,2),(8,5),(8,8)}
R 1 + = ⋃ i = 1 ∣ A ∣ R i = R 1 ∪ R 2 ∪ R 3 ∪ R 4 ∪ R 5 = { ( 2 , 2 ) , ( 2 , 8 ) , ( 8 , 8 ) } \mathbf{R}_1^+=\bigcup_{i=1}^{|\mathbf{A}|} \mathbf{R}^{i}=\mathbf{R}^{1} \cup \mathbf{R}^{2} \cup \mathbf{R}^{3} \cup \mathbf{R}^{4} \cup \mathbf{R}^{5}=\{(2,2),(2,8),(8,8)\} R1+​=⋃i=1∣A∣​Ri=R1∪R2∪R3∪R4∪R5={(2,2),(2,8),(8,8)}
R 1 ∗ = R 1 + ∪ A 0 = { ( 2 , 2 ) , ( 2 , 8 ) , ( 8 , 8 ) } \mathbf{R}_1^*=\mathbf{R}_1^+\cup \mathbf{A}^0=\{(2,2),(2,8),(8,8)\} R1∗​=R1+​∪A0={(2,2),(2,8),(8,8)}

作业2

(1)给定一个矩阵并计算其各种范数
给定矩阵 X = [ 1 2 3 4 ] \mathbf{X}=\begin{bmatrix} 1&2\\ 3&4\\ \end{bmatrix} X=[13​24​]
l 0 = ∣ ∣ X ∣ ∣ 0 = 4 l_0=||\mathbf{X}||_0=4 l0​=∣∣X∣∣0​=4;
l 1 = ∣ ∣ X ∣ ∣ 1 = 1 + 2 + 3 + 4 = 10 l_1=||\mathbf{X}||_1=1+2+3+4=10 l1​=∣∣X∣∣1​=1+2+3+4=10;
l 2 = ∣ ∣ X ∣ ∣ 1 = 1 2 + 2 2 + 3 2 + 4 2 = 30 l_2=||\mathbf{X}||_1=\sqrt{1^2+2^2+3^2+4^2}=\sqrt{30} l2​=∣∣X∣∣1​=12+22+32+42 ​=30 ​;
l ∞ = ∣ ∣ X ∣ ∣ 1 = 4 l_\infin=||\mathbf{X}||_1=4 l∞​=∣∣X∣∣1​=4;
(2)解释优化目标式子:
min ⁡ ∑ ( i , j ∈ Ω ) ( f ( x i , t j ) − r i j ) (1) \min \sum_{(i,j\in\Omega)}(f(\mathbf{x}_i,\mathbf{t}_j)-r_{ij})\tag{1} min(i,j∈Ω)∑​(f(xi​,tj​)−rij​)(1)
式中:
X = [ x 1 , … , x n ] \mathbf{X}=[\mathbf{x}_1,\dots,\mathbf{x}_n] X=[x1​,…,xn​]表示用户信息;
T = [ t 1 , … , t n ] \mathbf{T}=[\mathbf{t}_1,\dots,\mathbf{t}_n] T=[t1​,…,tn​]表示商品信息;
r i j r_{ij} rij​表示评分矩阵 R = ( r i j ) n × m \mathbf{R} = (r_{ij})_{n×m} R=(rij​)n×m​中具体的某个评分;
Ω Ω Ω 为评分矩阵 R \mathbf{R} R中非零元素对应位置的集合;
​ f : R d u × R d t → R f: R^{d_{u}} \times R^{d_{t}} \rightarrow R f:Rdu​×Rdt​→R中, d u d_{u} du​与 d t d_{t} dt​分别表示用户和商品的属性树;
该式要学习一个 f f f 用于商品的推荐,使得预测结果 f ( x i , t j ) f(\mathbf{x}_i,\mathbf{t}_j) f(xi​,tj​)与真实值 r i j r_{ij} rij​均方误差MSE最小。
.

标签:mathbf,R1,cup,矩阵,day2,补档,离散数学,ij,rij
来源: https://blog.csdn.net/qq_52512724/article/details/119489513