SLAM--单目尺度漂移(相似变换群Sim3)
作者:互联网
相似变换群与李代数
对于单目视觉SLAM,由于单目的不确定性,在闭环检测中为了解决尺度漂移,一般会用到相似变换群
Sim3,用来描述相似变换:
p
′
=
[
s
R
t
0
1
]
p
=
s
R
p
+
t
p'=\begin{bmatrix} s\bm R&\bm t\\ \\0&1 \end{bmatrix}p=s\bm{Rp+t}
p′=⎣⎡sR0t1⎦⎤p=sRp+t
和SO3、SE3类似,可以将其描述为群:
S
i
m
(
3
)
=
{
S
=
[
s
R
t
0
1
]
∈
R
4
×
4
}
Sim(3)=\{S= \begin{bmatrix} s\bm R&\bm t\\ \\0&1 \end{bmatrix} \in {\mathbb{R}^{4\times 4}} \}
Sim(3)={S=⎣⎡sR0t1⎦⎤∈R4×4}
对应的李代数sim(3)是一个7维的向量(7个自由度):
s
i
m
(
3
)
=
{
ζ
=
[
ρ
ϕ
σ
]
∈
R
7
∣
ρ
∈
R
3
,
ϕ
∈
s
o
(
3
)
,
ζ
∧
=
[
σ
I
+
ϕ
∧
ρ
0
T
0
]
∈
R
4
×
4
}
sim(3) = \{ \zeta = \left[ {\begin{matrix} \rho \\ \phi \\ \sigma \end{matrix}} \right] \in {\mathbb{R}^7}|\rho \in {\mathbb{R}^3},\phi \in so(3),{\zeta ^ \wedge } = \left[ {\begin{matrix} {\sigma I+{\phi ^ \wedge }}&\rho \\ ~\\ {{0^T}}&0 \end{matrix}} \right]\in {\mathbb{R}^{4\times 4}} \}
sim(3)={ζ=⎣⎡ρϕσ⎦⎤∈R7∣ρ∈R3,ϕ∈so(3),ζ∧=⎣⎡σI+ϕ∧ 0Tρ0⎦⎤∈R4×4}
其指数映射为:
[
s
R
t
0
1
]
=
exp
(
ζ
∧
)
=
[
exp
(
σ
)
+
exp
(
ϕ
∧
)
J
s
ρ
0
T
1
]
\begin{bmatrix} s\bm R&\bm t\\ \\0&1 \end{bmatrix}=\exp(\zeta ^\wedge)=\left[ {\begin{matrix} {\exp(\sigma)+\exp({\phi ^ \wedge }})& J_s\rho \\ ~\\ {{0^T}}&1 \end{matrix}} \right]
⎣⎡sR0t1⎦⎤=exp(ζ∧)=⎣⎡exp(σ)+exp(ϕ∧) 0TJsρ1⎦⎤
其中
J
s
=
e
σ
−
1
σ
I
+
σ
e
σ
sin
θ
+
(
1
−
e
σ
cos
θ
)
θ
σ
2
+
θ
2
a
∧
+
(
e
σ
−
1
σ
−
(
e
σ
cos
θ
−
1
)
σ
+
(
e
σ
sin
θ
)
θ
σ
2
+
θ
2
)
a
∧
a
∧
J_s = \frac {e^{\sigma}-1}{\sigma}\bm I+\frac{\sigma e^\sigma \sin \theta+(1-e^\sigma\cos \theta)\theta} {\sigma^2+\theta^2}\bm a^{\wedge}+(\frac {e^{\sigma}-1} {\sigma}-\frac {(e^\sigma\cos \theta-1)\sigma+(e^\sigma \sin \theta)\theta} {\sigma^2+\theta^2})\bm a^{\wedge}\bm a^{\wedge}
Js=σeσ−1I+σ2+θ2σeσsinθ+(1−eσcosθ)θa∧+(σeσ−1−σ2+θ2(eσcosθ−1)σ+(eσsinθ)θ)a∧a∧
回环检测-Sim3求解
参考文献[1],求解。
对于Sim3群,有三对匹配点:
[
s
R
t
0
1
]
,
x
i
=
s
R
x
ˉ
i
+
t
i
∈
(
1
,
2
,
3
)
\begin{bmatrix} s\bm R&\bm t\\ \\0&1 \end{bmatrix},x_i = s\bm{R} \bar x_i+t \quad i \in (1,2,3)
⎣⎡sR0t1⎦⎤,xi=sRxˉi+ti∈(1,2,3)
计算质心:
c
=
1
3
(
x
1
+
x
2
+
x
3
)
,
c
ˉ
=
1
3
(
x
ˉ
1
+
x
ˉ
2
+
x
ˉ
3
)
c =\frac 1 3(x_1+x_2+x_3),\bar c = \frac 1 3 (\bar x_1+\bar x_2+\bar x_3)
c=31(x1+x2+x3),cˉ=31(xˉ1+xˉ2+xˉ3)
减去质心点:
y
i
=
x
i
−
c
,
y
ˉ
i
=
x
ˉ
i
−
c
ˉ
y_i = x_i-c,\quad \bar y_i =\bar x_i-\bar c
yi=xi−c,yˉi=xˉi−cˉ
得到映射矩阵H:
H
=
y
1
y
ˉ
1
T
+
y
2
y
ˉ
2
T
+
y
3
y
ˉ
3
T
H = y_1 \bar y_1^T + y_2 \bar y_2^T+ y_3\bar y_3^T
H=y1yˉ1T+y2yˉ2T+y3yˉ3T
奇异值SVD分解:
H
=
U
⋅
W
⋅
V
T
H = U\cdot W\cdot V^T
H=U⋅W⋅VT
求解得到R、t和尺度因子s:
R
=
V
⋅
U
T
,
t
=
c
−
s
R
c
ˉ
s
=
(
∥
y
1
∥
2
2
+
∥
y
2
∥
2
2
+
∥
y
3
∥
2
2
)
1
2
(
∥
y
ˉ
1
∥
2
2
+
∥
y
ˉ
2
∥
2
2
+
∥
y
ˉ
3
∥
2
2
)
1
2
R = V\cdot U^T,\quad t=c-s\bm R\bar c\\~\\ s=\frac {(\left\|y_1 \right\|_2^2+\left\|y_2 \right\|_2^2+\left\|y_3 \right\|_2^2)^{\frac 1 2}} {(\left\| \bar y_1 \right\|_2^2+\left\|\bar y_2 \right\|_2^2+\left\|\bar y_3 \right\|_2^2)^{\frac 1 2}}
R=V⋅UT,t=c−sRcˉ s=(∥yˉ1∥22+∥yˉ2∥22+∥yˉ3∥22)21(∥y1∥22+∥y2∥22+∥y3∥22)21
Sim3位姿图优化
我们知道SE3的位姿图优化:
e
i
j
(
ξ
i
,
ξ
j
)
=
ln
[
exp
(
−
ξ
i
j
∧
)
exp
(
−
ξ
i
∧
)
⋅
exp
(
ξ
j
∧
)
]
∨
,
e
i
j
(
ξ
i
,
ξ
j
)
=
ln
[
T
i
j
−
1
⋅
T
i
−
1
⋅
T
j
]
∨
e_{ij}(\xi_i,\xi_j)=\ln[\exp(-\xi_{ij} ^\land) \exp(-\xi_i ^\land)\cdot \exp(\xi_j ^\land)]^\vee, \\ ~\\e_{ij}(\xi_i,\xi_j)=\ln[T_{ij}^{-1}\cdot T_i^{-1}\cdot T_j]^\vee
eij(ξi,ξj)=ln[exp(−ξij∧)exp(−ξi∧)⋅exp(ξj∧)]∨, eij(ξi,ξj)=ln[Tij−1⋅Ti−1⋅Tj]∨
同理,对于Sim3的位姿图优化的误差函数可以表示为:
e
i
j
(
ζ
i
,
ζ
j
)
=
ln
[
exp
(
−
ζ
i
j
∧
)
exp
(
−
ζ
i
∧
)
⋅
exp
(
ζ
j
∧
)
]
∨
即
e
i
j
(
ζ
i
,
ζ
j
)
=
ln
[
S
i
j
−
1
⋅
S
i
−
1
⋅
S
j
]
∨
e_{ij}(\zeta_i,\zeta_j)=\ln[\exp(-\zeta_{ij} ^\land) \exp(-\zeta_i ^\land)\cdot \exp(\zeta_j ^\land)]^\vee\\ ~\\ 即\quad e_{ij}(\zeta_i,\zeta_j)=\ln[S_{ij}^{-1}\cdot S_i^{-1}\cdot S_j]^\vee
eij(ζi,ζj)=ln[exp(−ζij∧)exp(−ζi∧)⋅exp(ζj∧)]∨ 即eij(ζi,ζj)=ln[Sij−1⋅Si−1⋅Sj]∨
为了为优化作准备,我们保持每个位姿旋转和平移不变,并设置s=1,只有当回环检测的时候
s
≠
1
s\ne 1
s=1;
雅克比矩阵推导略;具体参考文献[2].
我们依然可以用g2o进行sim3的优化.
附上ORB-SLAM2中优化Sim3的源码:
int Optimizer::OptimizeSim3(KeyFrame *pKF1, KeyFrame *pKF2, vector<MapPoint *> &vpMatches1, g2o::Sim3 &g2oS12, const float th2, const bool bFixScale)
{
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
// Calibration
const cv::Mat &K1 = pKF1->mK;
const cv::Mat &K2 = pKF2->mK;
// Camera poses
const cv::Mat R1w = pKF1->GetRotation();
const cv::Mat t1w = pKF1->GetTranslation();
const cv::Mat R2w = pKF2->GetRotation();
const cv::Mat t2w = pKF2->GetTranslation();
// Set Sim3 vertex
g2o::VertexSim3Expmap * vSim3 = new g2o::VertexSim3Expmap();
vSim3->_fix_scale=bFixScale;
vSim3->setEstimate(g2oS12);
vSim3->setId(0);
vSim3->setFixed(false);
vSim3->_principle_point1[0] = K1.at<float>(0,2);
vSim3->_principle_point1[1] = K1.at<float>(1,2);
vSim3->_focal_length1[0] = K1.at<float>(0,0);
vSim3->_focal_length1[1] = K1.at<float>(1,1);
vSim3->_principle_point2[0] = K2.at<float>(0,2);
vSim3->_principle_point2[1] = K2.at<float>(1,2);
vSim3->_focal_length2[0] = K2.at<float>(0,0);
vSim3->_focal_length2[1] = K2.at<float>(1,1);
optimizer.addVertex(vSim3);
// Set MapPoint vertices
const int N = vpMatches1.size();
const vector<MapPoint*> vpMapPoints1 = pKF1->GetMapPointMatches();
vector<g2o::EdgeSim3ProjectXYZ*> vpEdges12;
vector<g2o::EdgeInverseSim3ProjectXYZ*> vpEdges21;
vector<size_t> vnIndexEdge;
vnIndexEdge.reserve(2*N);
vpEdges12.reserve(2*N);
vpEdges21.reserve(2*N);
const float deltaHuber = sqrt(th2);
int nCorrespondences = 0;
for(int i=0; i<N; i++)
{
if(!vpMatches1[i])
continue;
MapPoint* pMP1 = vpMapPoints1[i];
MapPoint* pMP2 = vpMatches1[i];
const int id1 = 2*i+1;
const int id2 = 2*(i+1);
const int i2 = pMP2->GetIndexInKeyFrame(pKF2);
if(pMP1 && pMP2)
{
if(!pMP1->isBad() && !pMP2->isBad() && i2>=0)
{
g2o::VertexSBAPointXYZ* vPoint1 = new g2o::VertexSBAPointXYZ();
cv::Mat P3D1w = pMP1->GetWorldPos();
cv::Mat P3D1c = R1w*P3D1w + t1w;
vPoint1->setEstimate(Converter::toVector3d(P3D1c));
vPoint1->setId(id1);
vPoint1->setFixed(true);
optimizer.addVertex(vPoint1);
g2o::VertexSBAPointXYZ* vPoint2 = new g2o::VertexSBAPointXYZ();
cv::Mat P3D2w = pMP2->GetWorldPos();
cv::Mat P3D2c = R2w*P3D2w + t2w;
vPoint2->setEstimate(Converter::toVector3d(P3D2c));
vPoint2->setId(id2);
vPoint2->setFixed(true);
optimizer.addVertex(vPoint2);
}
else
continue;
}
else
continue;
nCorrespondences++;
// Set edge x1 = S12*X2
Eigen::Matrix<double,2,1> obs1;
const cv::KeyPoint &kpUn1 = pKF1->mvKeysUn[i];
obs1 << kpUn1.pt.x, kpUn1.pt.y;
g2o::EdgeSim3ProjectXYZ* e12 = new g2o::EdgeSim3ProjectXYZ();
e12->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id2)));
e12->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
e12->setMeasurement(obs1);
const float &invSigmaSquare1 = pKF1->mvInvLevelSigma2[kpUn1.octave];
e12->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare1);
g2o::RobustKernelHuber* rk1 = new g2o::RobustKernelHuber;
e12->setRobustKernel(rk1);
rk1->setDelta(deltaHuber);
optimizer.addEdge(e12);
// Set edge x2 = S21*X1
Eigen::Matrix<double,2,1> obs2;
const cv::KeyPoint &kpUn2 = pKF2->mvKeysUn[i2];
obs2 << kpUn2.pt.x, kpUn2.pt.y;
g2o::EdgeInverseSim3ProjectXYZ* e21 = new g2o::EdgeInverseSim3ProjectXYZ();
e21->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id1)));
e21->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
e21->setMeasurement(obs2);
float invSigmaSquare2 = pKF2->mvInvLevelSigma2[kpUn2.octave];
e21->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare2);
g2o::RobustKernelHuber* rk2 = new g2o::RobustKernelHuber;
e21->setRobustKernel(rk2);
rk2->setDelta(deltaHuber);
optimizer.addEdge(e21);
vpEdges12.push_back(e12);
vpEdges21.push_back(e21);
vnIndexEdge.push_back(i);
}
// Optimize!
optimizer.initializeOptimization();
optimizer.optimize(5);
// Check inliers
int nBad=0;
for(size_t i=0; i<vpEdges12.size();i++)
{
g2o::EdgeSim3ProjectXYZ* e12 = vpEdges12[i];
g2o::EdgeInverseSim3ProjectXYZ* e21 = vpEdges21[i];
if(!e12 || !e21)
continue;
if(e12->chi2()>th2 || e21->chi2()>th2)
{
size_t idx = vnIndexEdge[i];
vpMatches1[idx]=static_cast<MapPoint*>(NULL);
optimizer.removeEdge(e12);
optimizer.removeEdge(e21);
vpEdges12[i]=static_cast<g2o::EdgeSim3ProjectXYZ*>(NULL);
vpEdges21[i]=static_cast<g2o::EdgeInverseSim3ProjectXYZ*>(NULL);
nBad++;
}
}
int nMoreIterations;
if(nBad>0)
nMoreIterations=10;
else
nMoreIterations=5;
if(nCorrespondences-nBad<10)
return 0;
// Optimize again only with inliers
optimizer.initializeOptimization();
optimizer.optimize(nMoreIterations);
int nIn = 0;
for(size_t i=0; i<vpEdges12.size();i++)
{
g2o::EdgeSim3ProjectXYZ* e12 = vpEdges12[i];
g2o::EdgeInverseSim3ProjectXYZ* e21 = vpEdges21[i];
if(!e12 || !e21)
continue;
if(e12->chi2()>th2 || e21->chi2()>th2)
{
size_t idx = vnIndexEdge[i];
vpMatches1[idx]=static_cast<MapPoint*>(NULL);
}
else
nIn++;
}
// Recover optimized Sim3
g2o::VertexSim3Expmap* vSim3_recov = static_cast<g2o::VertexSim3Expmap*>(optimizer.vertex(0));
g2oS12= vSim3_recov->estimate();
return nIn;
}
参考文献
1.Horn, Berthold, K, et al. Closed-form solution of absolute orientation using unit quaternions[J]. Journal of the Optical Society of America A, 1987.
2.Strasdat H . Local Accuracy and Global Consistency for Efficient SLAM[D]. PhD thesis, Imperial College London, 2012.
3.视觉SLAM十四讲–高翔
4.ORB-SLAM2 源码
标签:Sim3,bar,const,--,单目,exp,g2o,optimizer,vSim3 来源: https://blog.csdn.net/qq_42995327/article/details/119299158