其他分享
首页 > 其他分享> > Elasticsearch 聚合操作

Elasticsearch 聚合操作

作者:互联网

数据准备:

PUT /shop
{
  "settings": {
    "number_of_shards": 3,
    "number_of_replicas": 2
  }
}

PUT /shop/_mapping/goods
{
  "properties": {
    "brand": {
      "type": "keyword"
    },
    "price": {
      "type": "float"
    },
    "model": {
      "type": "keyword"
    }
  }
}

POST /shop/goods/_bulk
{"index": {}}
{"price" : 2299.00, "model" : "小米8", "brand" : "小米"}
{"index": {}}
{"price" : 4499.00, "model" : "Mate 20", "brand" : "华为"}
{"index": {}}
{"price" : 3299.00, "model" : "小米Mix3", "brand" : "小米"}
{"index": {}}
{"price" : 1199.00, "model" : "荣耀9i", "brand" : "华为"}
{"index": {}}
{"price" : 2799.00, "model" : "R17", "brand" : "OPPO"}
{"index": {}}
{"price" : 729.00, "model" : "红米6", "brand" : "小米"}
{"index": {}}
{"price" : 2799.00, "model" : "X23", "brand" : "VIVO"}
{"index": {}}
{"price" : 1799.00, "model" : "K1", "brand" : "OPPO"}

 

一、聚合为桶

按照手机的品牌brand划分为桶

查询指令:

GET /shop/_search
{
  "size": 0, 
  "aggs": {
    "brand_aggs": {
      "terms": {
        "field": "brand"
      }
    }
  }
}

- size: 查询条数,这里设置为0,因为我们不关心搜索到的数据,只关心聚合结果,提高效率
- aggs:声明这是一个聚合查询,是aggregations的缩写
  - popular_colors:给这次聚合起一个名字,任意。
    - terms:划分桶的方式,这里是根据词条划分
      - field:划分桶的字段

 

查询结果:

{
  "took": 6,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "brand_aggs": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "小米",
          "doc_count": 3
        },
        {
          "key": "OPPO",
          "doc_count": 2
        },
        {
          "key": "华为",
          "doc_count": 2
        },
        {
          "key": "VIVO",
          "doc_count": 1
        }
      ]
    }
  }
}

- hits:查询结果为空,因为我们设置了size为0
- aggregations:聚合的结果
  - brand_aggs:我们定义的聚合名称
    - buckets:查找到的桶,每个不同的brand字段值都会形成一个桶
      - key:这个桶对应的brand字段的值
      - doc_count:这个桶中的文档数量

 

二、桶内度量

为聚合结果添加求价格平均值的度量

查询指令:

GET /shop/_search
{
  "size": 0, 
  "aggs": {
    "brand_aggs": {
      "terms": {
        "field": "brand"
      },
      "aggs": {
        "price_aggs": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}

- aggs:我们在上一个aggs(brand_aggs)中添加新的aggs。可见度量也是一个聚合
  - price_aggs:聚合的名称
    - avg:度量的类型,这里是求平均值
      - field:度量运算的字段

 

查询结果:

{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "brand_aggs": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "小米",
          "doc_count": 3,
          "price_aggs": {
            "value": 2109
          }
        },
        {
          "key": "OPPO",
          "doc_count": 2,
          "price_aggs": {
            "value": 2299
          }
        },
        {
          "key": "华为",
          "doc_count": 2,
          "price_aggs": {
            "value": 2849
          }
        },
        {
          "key": "VIVO",
          "doc_count": 1,
          "price_aggs": {
            "value": 2799
          }
        }
      ]
    }
  }
}

可以看到每个桶中都有自己的 price_aggs 字段,这是度量聚合的结果

 

标签:count,聚合,key,doc,brand,Elasticsearch,aggs,操作,price
来源: https://www.cnblogs.com/heqiuyong/p/10353472.html