其他分享
首页 > 其他分享> > tcc分布式事务

tcc分布式事务

作者:互联网

简介

TCC 是Try、Confirm、Cancel三个词语的缩写,TCC要求每个分支事务实现三个操作:预处理Try、确认Confirm、撤销Cancel。Try操作做业务检查及资源预留,Confirm做业务确认操作,Cancel实现一个与 Try或者 Commit相反的操作即回滚操作。TM首先发起所有的分支事务的 try操作,任何一个分支事务的 try操作执行失败,TM将会发起所有分支事务的 Cancel操作,若 Try操作全部成功,TM将会发起所有分支事务的 Confirm操作,其中 Confirm/Cancel 操作若执行失败,TM会进行重试。

在这里插入图片描述

业务场景

咱们先来看看业务场景,假设你现在有一个电商系统,里面有一个支付订单的场景。

在这里插入图片描述
那对一个订单支付之后,我们需要做下面的步骤:

业务场景有了,现在我们要更进一步,实现一个 TCC 分布式事务的效果。

什么意思呢?也就是说:

  1. 订单服务-修改订单状态
  2. 库存服务-扣减库存
  3. 积分服务-增加积分
  4. 仓储服务-创建销售出库单。

上述这几个步骤,要么一起成功,要么一起失败,必须是一个整体性的事务。

举个例子,现在订单的状态都修改为“已支付”了,结果库存服务扣减库存失败。那个商品的库存原来是 100 件,现在卖掉了 2 件,本来应该是 98 件了。

结果呢?由于库存服务操作数据库异常,导致库存数量还是 100。这不是在坑人么,当然不能允许这种情况发生了!

但是如果你不用 TCC 分布式事务方案的话,就用个 go开发这么一个微服务系统,很有可能会干出这种事儿来。

我们来看看下面的这个图,直观的表达了上述的过程:

在这里插入图片描述
所以说,我们有必要使用 TCC 分布式事务机制来保证各个服务形成一个整体性的事务。

上面那几个步骤,要么全部成功,如果任何一个服务的操作失败了,就全部一起回滚,撤销已经完成的操作。

比如说库存服务要是扣减库存失败了,那么订单服务就得撤销那个修改订单状态的操作,然后得停止执行增加积分和通知出库两个操作。
在这里插入图片描述

落地实现 TCC 分布式事务

咱们就以一个 python 开发系统作为背景来解释。

TCC 实现阶段一:Try

首先,订单服务那儿,它的代码大致来说应该是这样子的:

class OrderService:
	def __init__(self,inv_srv,credit_srv,wms_srv):
		self.inv_srv=inv_srv #库存服务
		self.credit_srv=credit_srv #积分服务
		self.wms_srv=wms_srv #仓储服务
	def update()_order_status(self,status):
		pass
	
	def notify(self):
		self.update_order_status("TRADE_SUCESS")
		self.inv_srv.reduce_stock() #扣减库存
		self.credit_srv.add_credit()# 新增积分
		self.wms_srv.sale_delivery()# 通知仓库发货
		

其实就是订单服务完成本地数据库操作之后,通过grpc 来调用其他的各个服务罢了。

但是光是凭借这段代码,是不足以实现 TCC 分布式事务的啊?!兄弟们,别着急,我们对这个订单服务修改点儿代码好不好。

首先,上面那个订单服务先把自己的状态修改为:TRADE_SUCCESS。

这是啥意思呢?也就是说,在 pay() 那个方法里,你别直接把订单状态修改为已支付啊!你先把订单状态修改为 UPDATING,也就是修改中的意思。

这个状态是个没有任何含义的这么一个状态,代表有人正在修改这个状态罢了。

然后呢,库存服务直接提供的那个 reduce_stock() 接口里,也别直接扣减库存啊,你可以是冻结掉库存。

举个例子,本来你的库存数量是 100,你别直接 100 - 2 = 98,扣减这个库存!

你可以把可销售的库存:100 - 2 = 98,设置为 98 没问题,然后在一个单独的冻结库存的字段里,设置一个 2。也就是说,有 2 个库存是给冻结了。

积分服务的 add_credit() 接口也是同理,别直接给用户增加会员积分。你可以先在积分表里的一个预增加积分字段加入积分。

比如:用户积分原本是 1190,现在要增加 10 个积分,别直接 1190 + 10 = 1200 个积分啊!

你可以保持积分为 1190 不变,在一个预增加字段里,比如说 prepare_add_credit 字段,设置一个 10,表示有 10 个积分准备增加。

仓储服务的 sale_delivery() 接口也是同理啊,你可以先创建一个销售出库单,但是这个销售出库单的状态是“UNKNOWN”。

也就是说,刚刚创建这个销售出库单,此时还不确定它的状态是什么呢!

上面这套改造接口的过程,其实就是所谓的 TCC 分布式事务中的第一个 T 字母代表的阶段,也就是 Try 阶段。

总结上述过程,如果你要实现一个 TCC 分布式事务,首先你的业务的主流程以及各个接口提供的业务含义,不是说直接完成那个业务操作,而是完成一个 Try 的操作。

这个操作,一般都是锁定某个资源,设置一个预备类的状态,冻结部分数据,等等,大概都是这类操作。

咱们来一起看看下面这张图,结合上面的文字,再来捋一捋整个过程:
在这里插入图片描述

TCC 实现阶段二:Confirm

然后就分成两种情况了,第一种情况是比较理想的,那就是各个服务执行自己的那个 Try 操作,都执行成功了,Bingo!

这个时候,就需要依靠 TCC 分布式事务框架来推动后续的执行了。这里简单提一句,如果你要玩儿 TCC 分布式事务,必须引入一款 TCC 分布式事务框架,比如java国内开源的 seata、ByteTCC、Himly、TCC-transaction。

否则的话,感知各个阶段的执行情况以及推进执行下一个阶段的这些事情,不太可能自己手写实现,太复杂了。

如果你在各个服务里引入了一个 TCC 分布式事务的框架,订单服务里内嵌的那个 TCC 分布式事务框架可以感知到,各个服务的 Try 操作都成功了。

此时,TCC 分布式事务框架会控制进入 TCC 下一个阶段,第一个 C 阶段,也就是 Confirm 阶段。

为了实现这个阶段,你需要在各个服务里再加入一些代码。比如说,订单服务里,你可以加入一个 Confirm 的逻辑,就是正式把订单的状态设置为“已支付”了,大概是类似下面这样子:

库存服务也是类似的,你可以有一个 InventoryServiceConfirm 类,里面提供一个 reduce_stock() 接口的 Confirm 逻辑,这里就是将之前冻结库存字段的 2 个库存扣掉变为 0。

这样的话,可销售库存之前就已经变为 98 了,现在冻结的 2 个库存也没了,那就正式完成了库存的扣减。

积分服务也是类似的,可以在积分服务里提供一个 CreditServiceConfirm 类,里面有一个 addCredit() 接口的 Confirm 逻辑,就是将预增加字段的 10 个积分扣掉,然后加入实际的会员积分字段中,从 1190 变为 1120。

仓储服务也是类似,可以在仓储服务中提供一个 WmsServiceConfirm 类,提供一个 sale_delivery() 接口的 Confirm 逻辑,将销售出库单的状态正式修改为“已创建”,可以供仓储管理人员查看和使用,而不是停留在之前的中间状态“UNKNOWN”了。

好了,上面各种服务的 Confirm 的逻辑都实现好了,一旦订单服务里面的 TCC 分布式事务框架感知到各个服务的 Try 阶段都成功了以后,就会执行各个服务的 Confirm 逻辑。

订单服务内的 TCC 事务框架会负责跟其他各个服务内的 TCC 事务框架进行通信,依次调用各个服务的 Confirm 逻辑。然后,正式完成各个服务的所有业务逻辑的执行。

同样,给大家来一张图,顺着图一起来看看整个过程:

在这里插入图片描述

TCC 实现阶段三:Cancel

好,这是比较正常的一种情况,那如果是异常的一种情况呢?

举个例子:在 Try 阶段,比如积分服务吧,它执行出错了,此时会怎么样?

那订单服务内的 TCC 事务框架是可以感知到的,然后它会决定对整个 TCC 分布式事务进行回滚。

也就是说,会执行各个服务的第二个 C 阶段,Cancel 阶段。同样,为了实现这个 Cancel 阶段,各个服务还得加一些代码。

首先订单服务,它得提供一个 OrderServiceCancel 的类,在里面有一个 pay() 接口的 Cancel 逻辑,就是可以将订单的状态设置为“CANCELED”,也就是这个订单的状态是已取消。

库存服务也是同理,可以提供 reduce_stock() 的 Cancel 逻辑,就是将冻结库存扣减掉 2,加回到可销售库存里去,98 + 2 = 100。

积分服务也需要提供 addCredit() 接口的 Cancel 逻辑,将预增加积分字段的 10 个积分扣减掉。

仓储服务也需要提供一个 sale_delivery() 接口的 Cancel 逻辑,将销售出库单的状态修改为“CANCELED”设置为已取消。

然后这个时候,订单服务的 TCC 分布式事务框架只要感知到了任何一个服务的 Try 逻辑失败了,就会跟各个服务内的 TCC 分布式事务框架进行通信,然后调用各个服务的 Cancel 逻辑。

大家看看下面的图,直观的感受一下:
在这里插入图片描述

总结与思考

总结一下,你要玩儿TCC分布式事务的话:

  1. 首先需要选择某种TCC分布式事务框架,各个服务里就会有这个TCC分布式事务框架在运行。
  2. 然后你原本的一个接口,要改造为3个逻辑,Try-Confirm-Cancel。
  1. 某个服务的数据库宕机了
  2. 某个服务自己挂了
  3. 那个服务的redis、elasticsearch、MQ等基础设施故障了
  4. 某些资源不足了,比如说库存不够这些

终极大招

TCC优缺点

优点:
1.解决了跨服务的业务操作原子性问题,例如组合支付,订单减库存等场景非常实用

2.TCC的本质原理是把数据库的二阶段提交上升到微服务来实现,从而避免了数据库2阶段中锁冲突的长事务低性能风险。

3.TCC异步高性能,它采用了try先检查,然后异步实现confirm,真正提交的是在confirm方法中。

缺点:
1.对微服务的侵入性强,微服务的每个事务都必须实现try,confirm,cancel等3个方法,开发成本高,今后维护改造的成本也高。

2.为了达到事务的一致性要求,try,confirm、cancel接口必须实现等幂性操作。

(定时器+重试)

3.由于事务管理器要记录事务日志,必定会损耗一定的性能,并使得整个TCC事务时间拉长,建议采用redis的方式来记录事务日志。

tcc需要通过锁来确保数据的一致性,会加锁导致性能不高

标签:事务,服务,Confirm,tcc,Try,TCC,分布式
来源: https://blog.csdn.net/qq_45066628/article/details/119192658