其他分享
首页 > 其他分享> > 2021-07-29

2021-07-29

作者:互联网

mm监督学习 1.决策树(Decision Trees) 2.朴素贝叶斯分类(Naive Bayesian classification) 3.最小二乘法(Ordinary Least Squares Regression) 4.逻辑回归(Logistic Regression) 5.支持向量机(Support Vector Machine,SVM) 6.集成方法(Ensemble methods) 无监督学习 7.聚类算法(Clustering Algorithms) 8.主成分分析(Principal Component Analysis,PCA) 9.奇异值分解(Singular Value Decomposition,SVD) 10.独立成分分析(Independent Component A

感知机

 main.cpp

#include <iostream>
#include <vector>
#include "perceptron.h"
using std::vector;
using std::cout;
using std::endl;


int main() {
    Base* obj = new Perceptron();
    obj->run();
    delete obj;
    return 0;
}

perceptron.cpp 

#include "perceptron.h"


using std::string;
using std::vector;
using std::pair;


void Perceptron::getData(const std::string &filename) {
    //load data to a vector
    std::vector<double> temData;
    double onepoint;
    std::string line;
    inData.clear();
    std::ifstream infile(filename);
    std::cout<<"reading ..."<<std::endl;
    while(!infile.eof()){
        temData.clear();
        std::getline(infile, line);
        if(line.empty())
            continue;
        std::stringstream stringin(line);
        while(stringin >> onepoint){
            temData.push_back(onepoint);
        }
        indim = temData.size();
        indim -= 1;
        inData.push_back(temData);
    }
    std::cout<<"total data is "<<inData.size()<<std::endl;
}

void Perceptron::splitData(const float& trainTotalRatio){
    std::random_shuffle(inData.begin(), inData.end());
    unsigned long size = inData.size();
    unsigned long trainSize = size * trainTotalRatio;
    std::cout<<"total data is "<< size<<" ,train data has "<<trainSize<<std::endl;
    for(int i=0;i<size;++i){
        if (i<trainSize)
            trainData.push_back(inData[i]);
        else
            testData.push_back(inData[i]);

    }

}
void Perceptron::createFeatureGt() {
    //create feature for test,using trainData, testData
    for (const auto& data:trainData){
        std::vector<double> trainf;
        trainf.assign(data.begin(), data.end()-1);
        trainDataF.push_back(trainf);
        trainDataGT.push_back(*(data.end()-1));
    }
    for (const auto& data:testData){
        std::vector<double> testf;
        testf.assign(data.begin(), data.end()-1);
        testDataF.push_back(testf);
        testDataGT.push_back(*(data.end()-1));
    }
}

void Perceptron::initialize(std::vector<double>& init) {
    // must initialize parameter first, using vector to initialize
    if(init.size()!=indim+1) {
        std::cout<<"input dimension is should be "+std::to_string(indim+1)<<std::endl;
        throw init.size();
    }
    w.assign(init.begin(), init.end()-1);
    b = *(init.end()-1);
}



double Perceptron::inference(const std::vector<double>& inputData){
    //just compute wx+b , for compute loss and predict.
    if (inputData.size()!=indim){
        std::cout<<"input dimension is incorrect. "<<std::endl;
        throw inputData.size();
    }

    double sum_tem = 0.0;
    sum_tem = inputData * w;
    sum_tem += b;
    return sum_tem;
}



double Perceptron::loss(const std::vector<double>& inputData, const double& groundTruth){
    double infer = inference(inputData);
    double loss = -1.0 * groundTruth * infer;
    std::cout<<"loss is "<< loss <<std::endl;
    return loss;
}



std::pair<std::vector<double>, double> Perceptron::computeGradient(const std::vector<double>& inputData, const double& groundTruth) {
    double lossVal = loss(inputData, groundTruth);
    std::vector<double> wi;
    double bi;
    if (lossVal >= 0.0)
    {
        for(auto indata:inputData) {
            wi.push_back(indata*groundTruth);
        }
        bi = groundTruth;
    }
    else{
        for(auto indata:inputData) {
            wi.push_back(0.0);
        }
        bi = 0.0;
    }
    return std::pair<std::vector<double>, double>(wi, bi);//here, for understandable, we use pair to represent w and b.
    //you also could return a vector which contains w and b.
}


void Perceptron::train(const int & step, const float & lr) {
    std::vector<double> init = {1.0,1.0,1.0};
    initialize(init);
    int count = 0;
    for(int i=0; i<step; ++i){
        if (count==trainDataF.size()-1)
            count = 0;

        std::vector<double> inputData = trainDataF[count];
        double groundTruth = trainDataGT[count];
        auto grad = computeGradient(inputData, groundTruth);
        auto grad_w = grad.first;
        double grad_b = grad.second;
        for (int j=0; j<indim;++j){
            w[j] += lr * (grad_w[j]);
        }
        b += lr * (grad_b);
        count++;
    }
}


int Perceptron::predict(const std::vector<double>& inputData) {

    double out = inference(inputData);

    if(out>=0.0){

        return 1;
    }
    else{
        return -1;
    }


}

/*perceptrondata.txt
3 4 1
1 1 -1
2 4 1
1 2 -1
1 5 1
2 0.5 -1
1 6 1
1 2.5 -1
0.5 6 1
0 1 -1
2 2.5 1
0.5 1 -1
1 4 1
1.5 1 -1
2.7 1 1
2 3.5 1
0.8 3 -1
0.1 4 -1
*/
void Perceptron::run(){
    //记得更改样本路径
    getData("../data/perceptrondata.txt");
    splitData(0.6);//below is split data , and store it in  trainData, testData
    createFeatureGt();
    train(200, 1.0);//20 is steps and 1.0 is learning rate
    std::vector<std::vector<double>>  testData = getTestDataFeature();
    std::vector<double> testGT = getTestGT();
    for(int i=0; i<testData.size(); ++i){
        std::cout<<i<<std::endl;
        std::cout<<"The right class is "<<testGT[i]<<std::endl;
        int out = predict(testData[i]);
        std::cout<<"The predict class is "<<out<<std::endl;
    }
}

 perceptron.h

#ifndef MACHINE_LEARNING_PERCEPTRON_H
#define MACHINE_LEARNING_PERCEPTRON_H

#include <vector>
#include <array>
#include <utility>
#include "model_base.h"


class Perceptron: public Base{
private:
    std::vector<double> w;
    double b;
public:
    virtual void getData(const std::string& filename);
    virtual void run();
    void splitData(const float& );
    void createFeatureGt();//create feature for test,using trainData, testData
    void setDim(const unsigned long& iDim){indim = iDim;}
    double inference(const std::vector<double>&) ;
    void initialize(std::vector<double>& init);
    void train(const int& step,const float& lr);
    int predict(const std::vector<double>& inputData);
    double loss(const std::vector<double>& inputData, const double& groundTruth);
    std::pair<std::vector<double>, double> computeGradient(const std::vector<double>& inputData, const double& groundTruth);
    std::vector<std::vector<double>> getTestDataFeature(){return testDataF;}
    std::vector<double> getTestGT(){ return testDataGT;}
};



#endif //MACHINE_LEARNING_PERCEPTRON_H

K近邻

 朴素贝叶斯

 决策树

 逻辑回归

 支持向量机

 adaBoost

GMM 

标签:std,const,07,double,void,29,vector,2021,inputData
来源: https://blog.csdn.net/seek97/article/details/119206336