其他分享
首页 > 其他分享> > 一招教你数据仓库如何高效批量导入与更新数据

一招教你数据仓库如何高效批量导入与更新数据

作者:互联网

摘要:GaussDB(DWS)支持的MERGE INTO功能,可以同时进行大数据量的更新与插入。对于数据仓库是一项非常重要的技术。

本文分享自华为云社区《一招教你如何高效批量导入与更新数据》,原文作者:acydy。

前言

如果有一张表,我们既想对它更新,又想对它插入应该如何操作? 可以使用UPDATE和INSERT完成你的目标。

如果你的数据量很大,想尽快完成任务执行,可否有其他方案?那一定不要错过GaussDB(DWS)的MERGE INTO功能。

MERGE INTO 概念

MERGE INTO是SQL 2003引入的标准。

If a table T, as well as being updatable, is insertable-into, then rows can be inserted into it (subject to applicable Access Rules and Conformance Rules). The primary effect of an <insert statement> on T is to insert into T each of the zero or more rows contained in a specified table. The primary effect of a <merge statement> on T is to replace zero or more rows in T with specified rows and/or to insert into T zero or more specified rows, depending on the result of a <search condition> and on whether one or both of <merge when matched clause> and <merge when not matched clause> are specified.

一张表在一条语句里面既可以被更新,也可以被插入。是否被更新还是插入取决于search condition的结果和指定的merge when matched clause(当condition匹配时做什么操作)和merge when not matched clause(当condition不匹配时做什么操作)语法。

SQL 2008进行了扩展,可以使用多个MATCHED 和NOT MATCHED 。

MERGE has been extended to support multiple MATCHED and NOT MATCHED clauses, each accompanied by a search condition, that gives much greater flexibility in the coding of complex MERGE statements to handle update conflicts.

MERGE INTO 命令涉及到两张表。目标表:被插入或者更新的表。源表:用于跟目标表进行匹配的表,目标表的数据来源。

MERGE INTO语句将目标表和源表中数据针对关联条件进行匹配,若关联条件匹配时对目标表进行UPDATE,无法匹配时对目标表执行INSERT。

使用场景:当业务中需要将一个表中大量数据添加到现有表时,使用MERGE INTO 可以高效地将数据导入,避免多次INSERT+UPDATE操作。

MERGE INTO 语法

GaussDB(DWS) MERGE INTO 语法如下:

MERGE INTO table_name [ [ AS ] alias ]
USING { { table_name | view_name } | subquery } [ [ AS ] alias ]
ON ( condition )
[
  WHEN MATCHED THEN
  UPDATE SET { column_name = { expression | DEFAULT } |
          ( column_name [, ...] ) = ( { expression | DEFAULT } [, ...] ) } [, ...]
  [ WHERE condition ]
]
[
  WHEN NOT MATCHED THEN
  INSERT { DEFAULT VALUES |
  [ ( column_name [, ...] ) ] VALUES ( { expression | DEFAULT } [, ...] ) [, ...] [ WHERE condition ] }
];

实战应用

首先创建好下面几张表,用于执行MREGE INTO 操作。

gaussdb=# CREATE TABLE dst (
  product_id INT,
  product_name VARCHAR(20),
  category VARCHAR(20),
  total INT
) DISTRIBUTE BY HASH(product_id);

gaussdb=# CREATE TABLE dst_data (
  product_id INT,
  product_name VARCHAR(20),
  category VARCHAR(20),
  total INT
) DISTRIBUTE BY HASH(product_id);

gaussdb=# CREATE TABLE src (
  product_id INT,
  product_name VARCHAR(20),
  category VARCHAR(20),
  total INT
) DISTRIBUTE BY HASH(product_id);

gaussdb=# INSERT INTO dst_data VALUES(1601,'lamaze','toys',100),(1600,'play gym','toys',100),(1502,'olympus','electrncs',100),(1501,'vivitar','electrnc',100),(1666,'harry potter','dvd',100);
gaussdb=# INSERT INTO src VALUES(1700,'wait interface','books',200),(1666,'harry potter','toys',200),(1601,'lamaze','toys',200),(1502,'olympus camera','electrncs',200);
gaussdb=# INSERT INTO dst SELECT * FROM dst_data;

同时指定WHEN MATCHED 与WHEN NOT MATCHED

MERGE INTO转化成JOIN将两个表进行关联处理,关联条件就是ON后指定的条件。

gaussdb=# EXPLAIN (COSTS off)
MERGE INTO dst x
USING src y
ON x.product_id = y.product_id
WHEN MATCHED THEN
  UPDATE SET product_name = y.product_name, category = y.category, total = y.total
WHEN NOT MATCHED THEN
  INSERT VALUES (y.product_id, y.product_name, y.category, y.total);
 
                    QUERY PLAN
--------------------------------------------------
  id |                operation
-----+--------------------------------------------
   1 | ->  Streaming (type: GATHER)
   2 |    ->  Merge on dst x
   3 |       ->  Streaming(type: REDISTRIBUTE)
   4 |          ->  Hash Left Join (5, 6)
   5 |             ->  Seq Scan on src y
   6 |             ->  Hash
   7 |                ->  Seq Scan on dst x

  Predicate Information (identified by plan id)
 ------------------------------------------------
   4 --Hash Left Join (5, 6)
         Hash Cond: (y.product_id = x.product_id)
(14 rows)

为什么这里转化成了LEFT JOIN?

由于需要在目标表与源表匹配时更新目标表,不匹配时向目标表插入数据。也就是源表的一部分数据用于更新目标表,另一部分用于向目标表插入。与LEFT JOIN语义是相似的。

   5 --Seq Scan on public.src y
         Output: y.product_id, y.product_name, y.category, y.total, y.ctid
         Distribute Key: y.product_id
   6 --Hash
         Output: x.product_id, x.product_name, x.category, x.total, x.ctid, x.xc_node_id
   7 --Seq Scan on public.dst x
         Output: x.product_id, x.product_name, x.category, x.total, x.ctid, x.xc_node_id
         Distribute Key: x.product_id

两张表在product_id是1502,1601,1666时可以关联,所以这三条记录被更新。src表product_id是1700时未匹配,插入此条记录。其他未修改。

gaussdb=# SELECT * FROM dst ORDER BY 1;
 product_id | product_name | category  | total
------------+--------------+-----------+-------
       1501 | vivitar      | electrnc  |   100
       1502 | olympus      | electrncs |   100
       1600 | play gym     | toys      |   100       
       1601 | lamaze       | toys      |   100
       1666 | harry potter | dvd       |   100      
(5 rows)

gaussdb=# SELECT * FROM src ORDER BY 1;
 product_id |  product_name  | category  | total
------------+----------------+-----------+-------
       1502 | olympus camera | electrncs |   200
       1601 | lamaze         | toys      |   200       
       1666 | harry potter   | toys      |   200
       1700 | wait interface | books     |   200       
(4 rows)

gaussdb=# MERGE INTO dst x
USING src y
ON x.product_id = y.product_id
WHEN MATCHED THEN
  UPDATE SET product_name = y.product_name, category = y.category, total = y.total
WHEN NOT MATCHED THEN
  INSERT VALUES (y.product_id, y.product_name, y.category, y.total);
MERGE 4
gaussdb=# SELECT * FROM dst ORDER BY 1;
 product_id |  product_name  | category  | total
------------+----------------+-----------+-------
       1501 | vivitar        | electrnc  |   100  -- 未修改
       1502 | olympus camera | electrncs |   200  -- 更新
       1600 | play gym       | toys      |   100  -- 未修改
       1601 | lamaze         | toys      |   200  -- 更新
       1666 | harry potter   | toys      |   200  -- 更新
       1700 | wait interface | books     |   200  -- 插入
(6 rows)

可以通过EXPLAIN PERFORMANCE或者EXPLAIN ANALYZE查看UPDATE、INSERT各自个数。(这里仅显示必要部分)

在Predicate Information部分可以看到总共插入一条,更新三条。

在Datanode Information部分可以看到每个节点的信息。datanode1上更新2条,datanode2上插入一条,更新1条。

gaussdb=# EXPLAIN PERFORMANCE
MERGE INTO dst x
USING src y
ON x.product_id = y.product_id
WHEN MATCHED THEN
  UPDATE SET product_name = y.product_name, category = y.category, total = y.total
WHEN NOT MATCHED THEN
  INSERT VALUES (y.product_id, y.product_name, y.category, y.total);
 
  Predicate Information (identified by plan id)
 ------------------------------------------------
   2 --Merge on public.dst x
         Merge Inserted: 1
         Merge Updated: 3
 
                      Datanode Information (identified by plan id)
 ---------------------------------------------------------------------------------------
   2 --Merge on public.dst x
         datanode1 (Tuple Inserted 0, Tuple Updated 2)
         datanode2 (Tuple Inserted 1, Tuple Updated 1)  

省略WHEN NOT MATCHED 部分。

gaussdb=# EXPLAIN (COSTS off)
MERGE INTO dst x
USING src y
ON x.product_id = y.product_id
WHEN MATCHED THEN
  UPDATE SET product_name = y.product_name, category = y.category, total = y.total;
                    QUERY PLAN
--------------------------------------------------
  id |             operation
 ----+-----------------------------------
   1 | ->  Streaming (type: GATHER)
   2 |    ->  Merge on dst x
   3 |       ->  Hash Join (4,5)
   4 |          ->  Seq Scan on dst x
   5 |          ->  Hash
   6 |             ->  Seq Scan on src y

  Predicate Information (identified by plan id)
 ------------------------------------------------
   3 --Hash Join (4,5)
         Hash Cond: (x.product_id = y.product_id)
(13 rows)
gaussdb=# truncate dst;
gaussdb=# INSERT INTO dst SELECT * FROM dst_data;
gaussdb=# MERGE INTO dst x
USING src y
ON x.product_id = y.product_id
WHEN MATCHED THEN
  UPDATE SET product_name = y.product_name, category = y.category, total = y.total;
MERGE 3
gaussdb=# SELECT * FROM dst;
 product_id |  product_name  | category  | total
------------+----------------+-----------+-------
       1501 | vivitar        | electrnc  |   100  -- 未修改
       1502 | olympus camera | electrncs |   200  -- 更新
       1600 | play gym       | toys      |   100  -- 未修改
       1601 | lamaze         | toys      |   200  -- 更新
       1666 | harry potter   | toys      |   200  -- 更新
(5 rows)

省略WHEN NOT MATCHED

gaussdb=# EXPLAIN (COSTS off)
MERGE INTO dst x
USING src y
ON x.product_id = y.product_id
WHEN NOT MATCHED THEN
  INSERT VALUES (y.product_id, y.product_name, y.category, y.total);
                    QUERY PLAN
--------------------------------------------------
  id |                operation
 ----+-----------------------------------------
   1 | ->  Streaming (type: GATHER)
   2 |    ->  Merge on dst x
   3 |       ->  Streaming(type: REDISTRIBUTE)
   4 |          ->  Hash Left Join (5, 6)
   5 |             ->  Seq Scan on src y
   6 |             ->  Hash
   7 |                ->  Seq Scan on dst x

  Predicate Information (identified by plan id)
 ------------------------------------------------
   4 --Hash Left Join (5, 6)
         Hash Cond: (y.product_id = x.product_id)
(14 rows)

gaussdb=# truncate dst;
gaussdb=# INSERT INTO dst SELECT * FROM dst_data;
gaussdb=# MERGE INTO dst x
USING src y
ON x.product_id = y.product_id
WHEN NOT MATCHED THEN
  INSERT VALUES (y.product_id, y.product_name, y.category, y.total);
MERGE 1
gaussdb=# SELECT * FROM dst ORDER BY 1;
 product_id |  product_name  | category  | total
------------+----------------+-----------+-------
       1501 | vivitar        | electrnc  |   100  -- 未修改
       1502 | olympus        | electrncs |   100  -- 未修改
       1600 | play gym       | toys      |   100  -- 未修改
       1601 | lamaze         | toys      |   100  -- 未修改
       1666 | harry potter   | dvd       |   100  -- 未修改
       1700 | wait interface | books     |   200  -- 插入
(6 rows)

WHERE过滤条件

语义是在进行更新或者插入前判断当前行是否满足过滤条件,如果不满足,就不进行更新或者插入。如果对于字段不想被更新,需要指定过滤条件。

下面例子在两表可关联时,只会更新product_name = 'olympus’的行。在两表无法关联时且源表的product_id != 1700时才会进行插入。

gaussdb=# truncate dst;
gaussdb=# INSERT INTO dst SELECT * FROM dst_data;
gaussdb=# MERGE INTO dst x
USING src y
ON x.product_id = y.product_id
WHEN MATCHED THEN
  UPDATE SET product_name = y.product_name, category = y.category, total = y.total
  WHERE x.product_name = 'olympus'
WHEN NOT MATCHED THEN
  INSERT VALUES (y.product_id, y.product_name, y.category, y.total) WHERE y.product_id != 1700;
MERGE 1
gaussdb=# SELECT * FROM dst ORDER BY 1;
SELECT * FROM dst ORDER BY 1;
 product_id |  product_name  | category  | total
------------+----------------+-----------+-------
       1501 | vivitar        | electrnc  |   100
       1502 | olympus camera | electrncs |   200
       1600 | play gym       | toys      |   100
       1601 | lamaze         | toys      |   100
       1666 | harry potter   | dvd       |   100
(5 rows)

子查询

在USING部分可以使用子查询,进行更复杂的关联操作。

MERGE INTO dst x
USING (
  SELECT product_id, product_name, category, sum(total) AS total FROM src group by product_id, product_name, category
) y
ON x.product_id = y.product_id
WHEN MATCHED THEN
    UPDATE SET product_name = x.product_name, category = x.category, total = x.total
WHEN NOT MATCHED THEN
    INSERT VALUES (y.product_id, y.product_name, y.category, y.total + 200);
MERGE INTO dst x
USING (
  SELECT 1501 AS product_id, 'vivitar 35mm' AS product_name, 'electrncs' AS category, 100 AS total UNION ALL
  SELECT 1666 AS product_id, 'harry potter' AS product_name, 'dvd' AS category, 100 AS total
) y
ON x.product_id = y.product_id
WHEN MATCHED THEN
    UPDATE SET product_name = x.product_name, category = x.category, total = x.total
WHEN NOT MATCHED THEN
    INSERT VALUES (y.product_id, y.product_name, y.category, y.total + 200);

存储过程

gaussdb=# CREATE OR REPLACE PROCEDURE store_procedure1()
AS
BEGIN
  MERGE INTO dst x
  USING src y
  ON x.product_id = y.product_id
  WHEN MATCHED THEN
    UPDATE SET product_name = y.product_name, category = y.category, total = y.total;
END;
/

CREATE PROCEDURE
gaussdb=# CALL store_procedure1();

MERGE INTO背后原理

上文提到了MREGE INTO转化成LEFT JOIN或者INNER JOIN将目标表和源表进行关联。那么如何知道某一行要进行更新还是插入?

通过EXPLAIN VERBOSE查看算子的输出。扫描两张表时都输出了ctid列。那么ctid列有什么作用呢?

   5 --Seq Scan on public.src y
         Output: y.product_id, y.product_name, y.category, y.total, y.ctid
         Distribute Key: y.product_id
   6 --Hash
         Output: x.product_id, x.product_name, x.category, x.total, x.ctid, x.xc_node_id
   7 --Seq Scan on public.dst x
         Output: x.product_id, x.product_name, x.category, x.total, x.ctid, x.xc_node_id
         Distribute Key: x.product_id

ctid标识了这一行在存储上具体位置,知道了这个位置就可以对这个位置的数据进行更新。GaussDB(DWS)作为MPP分布式数据库,还需要知道节点的信息(xc_node_id)。UPDATE操作需要这两个值。

在MREGE INTO这里ctid还另有妙用。当目标表匹配时需要更新,这是就保留本行ctid值。如果无法匹配,插入即可。就不需要ctid,此时可认识ctid值是NULL。根据LEFT JOIN输出的ctid结果是否为NULL,最终决定本行该被更新还是插入。

这样在两张表做完JOIN操作后,根据JOIN后输出的ctid列,更新或者插入某一行。

注意事项

使用MERGE INTO时要注意匹配条件是否合适。如果不注意,容易造成数据被非预期更新,可能整张表被更新。

总结

GAUSSDB(DWS)提供了高效的数据导入的功能MERGE INTO,对于数据仓库是一项非常关键的功能。可以使用MERGE INTO 同时更新和插入一张表,在数据量非常大的情况下也能很快完成地数据导入。


想了解GuassDB(DWS)更多信息,欢迎微信搜索“GaussDB DWS”关注微信公众号,和您分享最新最全的PB级数仓黑科技,后台还可获取众多学习资料哦~

标签:category,product,name,dst,数据仓库,导入,一招,total,id
来源: https://www.cnblogs.com/9849aa/p/15037800.html