其他分享
首页 > 其他分享> > 深度解析 Lucene 轻量级全文索引实现原理

深度解析 Lucene 轻量级全文索引实现原理

作者:互联网

一、Lucene简介

1.1 Lucene是什么?

1.2 Lucene的使用场景

适用于需要数据索引量不大的场景,当索引量过大时需要使用ES、Solr等全文搜索服务器实现搜索功能。

1.3 通过本文你能了解到哪些内容?

本文旨在分享Lucene搜索引擎的源码阅读和功能开发中的经验,Lucene采用7.3.1版本。

二、Lucene基础工作流程

索引的生成分为两个部分:

1. 创建阶段:

2. 搜索阶段:

索引创建及搜索流程如下图所示:

三、Lucene索引构成

3.1 正向索引

Lucene的基础层次结构由索引、段、文档、域、词五个部分组成。正向索引的生成即为基于Lucene的基础层次结构一级一级处理文档并分解域存储词的过程。

索引文件层级关系如图1所示:

3.2 倒排索引

Lucene全文索引的核心是基于倒排索引实现的快速索引机制。

倒排索引原理如图2所示,倒排索引简单来说就是基于分析器将文本内容进行分词后,记录每个词出现在哪篇文章中,从而通过用户输入的搜索词查询出包含该词的文章。

**问题:**上述倒排索引使用时每次都需要将索引词加载到内存中,当文章数量较多,篇幅较长时,索引词可能会占用大量的存储空间,加载到内存后内存损耗较大。

解决方案:从Lucene4开始,Lucene采用了FST来减少索引词带来的空间消耗。

FST(Finite StateTransducers),中文名有限状态机转换器。其主要特点在于以下四点:

具体存储方式如图3所示:

倒排索引相关文件包含.tip、.tim和.doc这三个文件,其中:

3.3 索引查询及文档搜索过程

Lucene利用倒排索引定位需要查询的文档号,通过文档号搜索出文件后,再利用词权重等信息对文档排序后返回。

文件格式如图4所示:

上文主要讲解Lucene的工作原理,下文将阐述Java中Lucene执行索引、查询等操作的相关代码。

四、Lucene的增删改操作

Lucene项目中文本的解析,存储等操作均由IndexWriter类实现,IndexWriter文件主要由Directory和IndexWriterConfig两个类构成,其中:

Directory:用于指定存放索引文件的目录类型。既然要对文本内容进行搜索,自然需要先将这些文本内容及索引信息写入到目录里。Directory是一个抽象类,针对索引的存储允许有多种不同的实现。常见的存储方式一般包括存储有本地(FSDirectory),内存(RAMDirectory)等。

IndexWriterConfig:用于指定IndexWriter在文件内容写入时的相关配置,包括OpenMode索引构建模式、Similarity相关性算法等。

IndexWriter具体是如何操作索引的呢?让我们来简单分析一下IndexWriter索引操作的相关源码。

4.1. 文档的新增

a. Lucene会为每个文档创建ThreadState对象,对象持有DocumentWriterPerThread来执行文件的增删改操作;

ThreadState getAndLock(Thread requestingThread, DocumentsWriter documentsWriter) {
  ThreadState threadState = null;
  synchronized (this) {
    if (freeList.isEmpty()) {
      // 如果不存在已创建的空闲ThreadState,则新创建一个
      return newThreadState();
    } else {
      // freeList后进先出,仅使用有限的ThreadState操作索引
      threadState = freeList.remove(freeList.size()-1);

      // 优先使用已经初始化过DocumentWriterPerThread的ThreadState,并将其与当前
      // ThreadState换位,将其移到队尾优先使用
      if (threadState.dwpt == null) {
        for(int i=0;i<freeList.size();i++) {
          ThreadState ts = freeList.get(i);
          if (ts.dwpt != null) {
            freeList.set(i, threadState);
            threadState = ts;
            break;
          }
        }
      }
    }
  }
  threadState.lock();
  
  return threadState;
}

b. 索引文件的插入:DocumentWriterPerThread调用DefaultIndexChain下的processField来处理文档中的每个域,processField方法是索引链的核心执行逻辑。通过用户对每个域设置的不同的FieldType进行相应的索引、分词、存储等操作。FieldType中比较重要的是indexOptions:

// 构建倒排表

if (fieldType.indexOptions() != IndexOptions.NONE) {
    fp = getOrAddField(fieldName, fieldType, true);
    boolean first = fp.fieldGen != fieldGen;
    // field具体的索引、分词操作
    fp.invert(field, first);

    if (first) {
      fields[fieldCount++] = fp;
      fp.fieldGen = fieldGen;
    }
} else {
  verifyUnIndexedFieldType(fieldName, fieldType);
}

// 存储该field的storeField
if (fieldType.stored()) {
  if (fp == null) {
    fp = getOrAddField(fieldName, fieldType, false);
  }
  if (fieldType.stored()) {
    String value = field.stringValue();
    if (value != null && value.length() > IndexWriter.MAX_STORED_STRING_LENGTH) {
      throw new IllegalArgumentException("stored field \"" + field.name() + "\" is too large (" + value.length() + " characters) to store");
    }
    try {
      storedFieldsConsumer.writeField(fp.fieldInfo, field);
    } catch (Throwable th) {
      throw AbortingException.wrap(th);
    }
  }
}

// 建立DocValue(通过文档查询文档下包含了哪些词)
DocValuesType dvType = fieldType.docValuesType();
if (dvType == null) {
  throw new NullPointerException("docValuesType must not be null (field: \"" + fieldName + "\")");
}
if (dvType != DocValuesType.NONE) {
  if (fp == null) {
    fp = getOrAddField(fieldName, fieldType, false);
  }
  indexDocValue(fp, dvType, field);
}
if (fieldType.pointDimensionCount() != 0) {
  if (fp == null) {
    fp = getOrAddField(fieldName, fieldType, false);
  }
  indexPoint(fp, field);
}

c. 解析Field首先需要构造TokenStream类,用于产生和转换token流,TokenStream有两个重要的派生类Tokenizer和TokenFilter,其中Tokenizer用于通过java.io.Reader类读取字符,产生Token流,然后通过任意数量的TokenFilter来处理这些输入的Token流,具体源码如下:

// invert:对Field进行分词处理首先需要将Field转化为TokenStream
try (TokenStream stream = tokenStream = field.tokenStream(docState.analyzer, tokenStream))
// TokenStream在不同分词器下实现不同,根据不同分词器返回相应的TokenStream
if (tokenStream != null) {
  return tokenStream;
} else if (readerValue() != null) {
  return analyzer.tokenStream(name(), readerValue());
} else if (stringValue() != null) {
  return analyzer.tokenStream(name(), stringValue());
}

public final TokenStream tokenStream(final String fieldName, final Reader reader) {
  // 通过复用策略,如果TokenStreamComponents中已经存在Component则复用。
  TokenStreamComponents components = reuseStrategy.getReusableComponents(this, fieldName);
  final Reader r = initReader(fieldName, reader);
  // 如果Component不存在,则根据分词器创建对应的Components。
  if (components == null) {
    components = createComponents(fieldName);
    reuseStrategy.setReusableComponents(this, fieldName, components);
  }
  // 将java.io.Reader输入流传入Component中。
  components.setReader(r);
  return components.getTokenStream();
}

d. 根据IndexWriterConfig中配置的分词器,通过策略模式返回分词器对应的分词组件,针对不同的语言及不同的分词需求,分词组件存在很多不同的实现。

 以StandardAnalyzer(标准分词器)为例:

// 标准分词器创建Component过程,涵盖了标准分词处理器、Term转化小写、常用词过滤三个功能
protected TokenStreamComponents createComponents(final String fieldName) {
  final StandardTokenizer src = new StandardTokenizer();
  src.setMaxTokenLength(maxTokenLength);
  TokenStream tok = new StandardFilter(src);
  tok = new LowerCaseFilter(tok);
  tok = new StopFilter(tok, stopwords);
  return new TokenStreamComponents(src, tok) {
    @Override
    protected void setReader(final Reader reader) {
      src.setMaxTokenLength(StandardAnalyzer.this.maxTokenLength);
      super.setReader(reader);
    }
  };
}

e. 在获取TokenStream之后通过TokenStream中的incrementToken方法分析并获取属性,再通过TermsHashPerField下的add方法构建倒排表,最终将Field的相关数据存储到类型为FreqProxPostingsArray的freqProxPostingsArray中,以及TermVectorsPostingsArray的termVectorsPostingsArray中,构成倒排表;

// 以LowerCaseFilter为例,通过其下的increamentToken将Token中的字符转化为小写
public final boolean incrementToken() throws IOException {
  if (input.incrementToken()) {
    CharacterUtils.toLowerCase(termAtt.buffer(), 0, termAtt.length());
    return true;
  } else
    return false;
}
  try (TokenStream stream = tokenStream = field.tokenStream(docState.analyzer, tokenStream)) {
    // reset TokenStream
    stream.reset();
    invertState.setAttributeSource(stream);
    termsHashPerField.start(field, first);
    // 分析并获取Token属性
    while (stream.incrementToken()) {
      ……
      try {
        // 构建倒排表
        termsHashPerField.add();
      } catch (MaxBytesLengthExceededException e) {
        ……
      } catch (Throwable th) {
        throw AbortingException.wrap(th);
      }
    }
    ……
}

4.2 文档的删除

a. Lucene下文档的删除,首先将要删除的Term或Query添加到删除队列中;

synchronized long deleteTerms(final Term... terms) throws IOException {
  // TODO why is this synchronized?
  final DocumentsWriterDeleteQueue deleteQueue = this.deleteQueue;
  // 文档删除操作是将删除的词信息添加到删除队列中,根据flush策略进行删除
  long seqNo = deleteQueue.addDelete(terms);
  flushControl.doOnDelete();
  lastSeqNo = Math.max(lastSeqNo, seqNo);
  if (applyAllDeletes(deleteQueue)) {
    seqNo = -seqNo;
  }
  return seqNo;
}

b. 根据Flush策略触发删除操作;

private boolean applyAllDeletes(DocumentsWriterDeleteQueue deleteQueue) throws IOException {
  // 判断是否满足删除条件 --> onDelete
  if (flushControl.getAndResetApplyAllDeletes()) {
    if (deleteQueue != null) {
      ticketQueue.addDeletes(deleteQueue);
    }
    // 指定执行删除操作的event
    putEvent(ApplyDeletesEvent.INSTANCE); // apply deletes event forces a purge
    return true;
  }
  return false;
}
public void onDelete(DocumentsWriterFlushControl control, ThreadState state) {
  // 判断并设置是否满足删除条件
  if ((flushOnRAM() && control.getDeleteBytesUsed() > 1024*1024*indexWriterConfig.getRAMBufferSizeMB())) {
    control.setApplyAllDeletes();
    if (infoStream.isEnabled("FP")) {
      infoStream.message("FP", "force apply deletes bytesUsed=" + control.getDeleteBytesUsed() + " vs ramBufferMB=" + indexWriterConfig.getRAMBufferSizeMB());
    }
  }
}

4.3 文档的更新

文档的更新就是一个先删除后插入的过程,本文就不再做更多赘述。

4.4 索引Flush

文档写入到一定数量后,会由某一线程触发IndexWriter的Flush操作,生成段并将内存中的Document信息写到硬盘上。Flush操作目前仅有一种策略:FlushByRamOrCountsPolicy。FlushByRamOrCountsPolicy主要基于两种策略自动执行Flush操作:

其中 activeBytes() 为dwpt收集的索引所占的内存量,deleteByteUsed为删除的索引量。

@Override
public void onInsert(DocumentsWriterFlushControl control, ThreadState state) {
  // 根据文档数进行Flush
  if (flushOnDocCount()
      && state.dwpt.getNumDocsInRAM() >= indexWriterConfig
          .getMaxBufferedDocs()) {
    // Flush this state by num docs
    control.setFlushPending(state);
  // 根据内存使用量进行Flush
  } else if (flushOnRAM()) {// flush by RAM
    final long limit = (long) (indexWriterConfig.getRAMBufferSizeMB() * 1024.d * 1024.d);
    final long totalRam = control.activeBytes() + control.getDeleteBytesUsed();
    if (totalRam >= limit) {
      if (infoStream.isEnabled("FP")) {
        infoStream.message("FP", "trigger flush: activeBytes=" + control.activeBytes() + " deleteBytes=" + control.getDeleteBytesUsed() + " vs limit=" + limit);
      }
      markLargestWriterPending(control, state, totalRam);
    }
  }
}

将内存信息写入索引库。

索引的Flush分为主动Flush和自动Flush,根据策略触发的Flush操作为自动Flush,主动Flush的执行与自动Flush有较大区别,关于主动Flush本文暂不多做赘述。需要了解的话可以跳转链接。

4.5 索引段Merge

索引Flush时每个dwpt会单独生成一个segment,当segment过多时进行全文检索可能会跨多个segment,产生多次加载的情况,因此需要对过多的segment进行合并。

段合并的执行通过MergeScheduler进行管理。mergeScheduler也包含了多种管理策略,包括NoMergeScheduler、SerialMergeScheduler和ConcurrentMergeScheduler。

  1. merge操作首先需要通过updatePendingMerges方法根据段的合并策略查询需要合并的段。段合并策略分为很多种,本文仅介绍两种Lucene默认使用的段合并策略:TieredMergePolicy和LogMergePolicy。
private synchronized boolean updatePendingMerges(MergePolicy mergePolicy, MergeTrigger trigger, int maxNumSegments)
  throws IOException {

  final MergePolicy.MergeSpecification spec;
  // 查询需要合并的段
  if (maxNumSegments != UNBOUNDED_MAX_MERGE_SEGMENTS) {
    assert trigger == MergeTrigger.EXPLICIT || trigger == MergeTrigger.MERGE_FINISHED :
    "Expected EXPLICT or MERGE_FINISHED as trigger even with maxNumSegments set but was: " + trigger.name();

    spec = mergePolicy.findForcedMerges(segmentInfos, maxNumSegments, Collections.unmodifiableMap(segmentsToMerge), this);
    newMergesFound = spec != null;
    if (newMergesFound) {
      final int numMerges = spec.merges.size();
      for(int i=0;i<numMerges;i++) {
        final MergePolicy.OneMerge merge = spec.merges.get(i);
        merge.maxNumSegments = maxNumSegments;
      }
    }
  } else {
    spec = mergePolicy.findMerges(trigger, segmentInfos, this);
  }
  // 注册所有需要合并的段
  newMergesFound = spec != null;
  if (newMergesFound) {
    final int numMerges = spec.merges.size();
    for(int i=0;i<numMerges;i++) {
      registerMerge(spec.merges.get(i));
    }
  }
  return newMergesFound;
}

2)通过ConcurrentMergeScheduler类中的merge方法创建用户合并的线程MergeThread并启动。

@Override
public synchronized void merge(IndexWriter writer, MergeTrigger trigger, boolean newMergesFound) throws IOException {
  ……
  while (true) {
    ……
    // 取出注册的后选段
    OneMerge merge = writer.getNextMerge();
    boolean success = false;
    try {
      // 构建用于合并的线程MergeThread 
      final MergeThread newMergeThread = getMergeThread(writer, merge);
      mergeThreads.add(newMergeThread);

      updateIOThrottle(newMergeThread.merge, newMergeThread.rateLimiter);

      if (verbose()) {
        message("    launch new thread [" + newMergeThread.getName() + "]");
      }
      // 启用线程
      newMergeThread.start();
      updateMergeThreads();

      success = true;
    } finally {
      if (!success) {
        writer.mergeFinish(merge);
      }
    }
  }
}

3)通过doMerge方法执行merge操作;

public void merge(MergePolicy.OneMerge merge) throws IOException {
  ……
      try {
        // 用于处理merge前缓存任务及新段相关信息生成
        mergeInit(merge);
        // 执行段之间的merge操作
        mergeMiddle(merge, mergePolicy);
        mergeSuccess(merge);
        success = true;
      } catch (Throwable t) {
        handleMergeException(t, merge);
      } finally {
        // merge完成后的收尾工作
        mergeFinish(merge)
      }
……
}

五、Lucene搜索功能实现

5.1 加载索引库

Lucene想要执行搜索首先需要将索引段加载到内存中,由于加载索引库的操作非常耗时,因此仅有当索引库产生变化时需要重新加载索引库。

加载索引库分为加载段信息和加载文档信息两个部分:

1)加载段信息:

2)加载文档信息:

5.2 封装

索引库加载完成后需要IndexReader封装进IndexSearch,IndexSearch通过用户构造的Query语句和指定的Similarity文本相似度算法(默认BM25)返回用户需要的结果。通过IndexSearch.search方法实现搜索功能。

搜索:Query包含多种实现,包括BooleanQuery、PhraseQuery、TermQuery、PrefixQuery等多种查询方法,使用者可根据项目需求构造查询语句

排序:IndexSearch除了通过Similarity计算文档相关性分值排序外,也提供了BoostQuery的方式让用户指定关键词分值,定制排序。Similarity相关性算法也包含很多种不同的相关性分值计算实现,此处暂不做赘述,读者有需要可自行网上查阅。

六、总结

Lucene作为全文索引工具包,为中小型项目提供了强大的全文检索功能支持,但Lucene在使用的过程中存在诸多问题:

Lucene使用时存在诸多限制,使用起来也不那么方便,当数据量增大时还是尽量选择ElasticSearch等分布式搜索服务器作为搜索功能的实现方案。

作者:vivo互联网服务器团队-Qian Yulun

 

标签:merge,全文索引,Lucene,索引,文档,Flush,排表,轻量级
来源: https://www.cnblogs.com/9849aa/p/15037780.html