其他分享
首页 > 其他分享> > ZYNQ7000 FSBL加载启动代码详解

ZYNQ7000 FSBL加载启动代码详解

作者:互联网

参考资料:

https://blog.csdn.net/zhaoxinfan/article/details/54958641

https://blog.csdn.net/asmartkiller/article/details/84072643

https://blog.csdn.net/qq_40155300/article/details/89001808

SDK版本:2017.4

写在前面:

该文档不足以使你清楚FSBL启动的寄存器级的操作细节,但可以让你看明白整个ZYNQ7000 FSBL代码执行的主要流程。

1. ZYNQ7000加载启动流程

 

(1)BootRom阶段为ARM上电后最早加载的代码,根据MIO引脚配置确认加载方式,初始化相应的启动介质,加载FSBL到OCM中,把控制权交给FSBL

(2)FSBL阶段完成PS的初始化,加载PL bit流文件,加载SSBL引导程序或者ARM的裸机程序

(3)SSBL阶段分两种情况:①裸机程序直接在DDR中执行②uboot引导加载kernel的过程

 

2. FSBL代码分析

(1)在文件FSBL_bsp/standalone_v6_5/src/asm_ventors.S中,声明了一个代码段,位于地址0处。开机后PS自动执行地址0处的指令,其中第一行代码为一个跳转:B _boot

.org 0
.text

.globl _vector_table

.section .vectors
_vector_table:
	B	_boot
	B	Undefined
	B	SVCHandler
	B	PrefetchAbortHandler
	B	DataAbortHandler
	NOP	/* Placeholder for address exception vector*/
	B	IRQHandler
	B	FIQHandler

(2)在同目录下找到文件boot.S中可以看到_boot标号下的代码,_boot会对系统做一系列的初始化,包括DDR,中断,MMU,cache等,执行完成后PS将具有执行C代码的能力。

可以看到在_boot代码最后又执行了一次跳转:b _start

	b	_start				/* jump to C startup code */
	and	r0, r0, r0			/* no op */

(3)在同目录下找到文件xil-crt0.S中可以看到_start标号下的代码,可以看到_start首先执行跳转:bl __cpu_init去执行CPU初始化操作

_start:
	bl      __cpu_init		/* Initialize the CPU first (BSP provides this) */

	mov	r0, #0

	/* clear sbss */
	ldr 	r1,.Lsbss_start		/* calculate beginning of the SBSS */
	ldr	r2,.Lsbss_end		/* calculate end of the SBSS */

(4)在_start标号代码的末尾可以看到bsp完成了所有的初始化工作,将跳转到main函数开始执行。

	/* make sure argc and argv are valid */
	mov	r0, #0
	mov	r1, #0

	/* Let her rip */
	bl	main

(5)回到FSBL工程,在目录FSBL/src/main.c中找到main函数,可以看到第一步就是调用了ps7_init()函数。

ps7_init()函数位于ps7_init.c文件中,这个C文件是由XPS根据用户的配置自动生成的。

查看ps7_init()函数,根据代码可以很明显可以看出该函数其实就是根据PS版本执行了MIO,PLL,CLK,DDR和其他外设的初始化。

int main(void)
{
	u32 BootModeRegister = 0;
	u32 HandoffAddress = 0;
	u32 Status = XST_SUCCESS;

	/*
	 * PCW initialization for MIO,PLL,CLK and DDR
	 */
	Status = ps7_init();
	if (Status != FSBL_PS7_INIT_SUCCESS) {
		fsbl_printf(DEBUG_GENERAL,"PS7_INIT_FAIL : %s\r\n",
						getPS7MessageInfo(Status));
		OutputStatus(PS7_INIT_FAIL);
		/*
		 * Calling FsblHookFallback instead of Fallback
		 * since, devcfg driver is not yet initialized
		 */
		FsblHookFallback();
	}
int
ps7_init() 
{
  // Get the PS_VERSION on run time
  unsigned long si_ver = ps7GetSiliconVersion ();
  int ret;
  //int pcw_ver = 0;
  
  if (si_ver == PCW_SILICON_VERSION_1) {
    ps7_mio_init_data = ps7_mio_init_data_1_0;
    ps7_pll_init_data = ps7_pll_init_data_1_0;
    ps7_clock_init_data = ps7_clock_init_data_1_0;
    ps7_ddr_init_data = ps7_ddr_init_data_1_0;
    ps7_peripherals_init_data = ps7_peripherals_init_data_1_0;
    //pcw_ver = 1;

  } else if (si_ver == PCW_SILICON_VERSION_2) {
    ps7_mio_init_data = ps7_mio_init_data_2_0;
    ps7_pll_init_data = ps7_pll_init_data_2_0;
    ps7_clock_init_data = ps7_clock_init_data_2_0;
    ps7_ddr_init_data = ps7_ddr_init_data_2_0;
    ps7_peripherals_init_data = ps7_peripherals_init_data_2_0;
    //pcw_ver = 2;

  } else {
    ps7_mio_init_data = ps7_mio_init_data_3_0;
    ps7_pll_init_data = ps7_pll_init_data_3_0;
    ps7_clock_init_data = ps7_clock_init_data_3_0;
    ps7_ddr_init_data = ps7_ddr_init_data_3_0;
    ps7_peripherals_init_data = ps7_peripherals_init_data_3_0;
    //pcw_ver = 3;
  }

  // MIO init
  ret = ps7_config (ps7_mio_init_data);  
  if (ret != PS7_INIT_SUCCESS) return ret;

  // PLL init
  ret = ps7_config (ps7_pll_init_data); 
  if (ret != PS7_INIT_SUCCESS) return ret;

  // Clock init
  ret = ps7_config (ps7_clock_init_data);
  if (ret != PS7_INIT_SUCCESS) return ret;

  // DDR init
  ret = ps7_config (ps7_ddr_init_data);
  if (ret != PS7_INIT_SUCCESS) return ret;



  // Peripherals init
  ret = ps7_config (ps7_peripherals_init_data);
  if (ret != PS7_INIT_SUCCESS) return ret;
  //xil_printf ("\n PCW Silicon Version : %d.0", pcw_ver);
  return PS7_INIT_SUCCESS;
}

(6)System Software Reset,使能系统软件复位功能

/*
	 * Unlock SLCR for SLCR register write
	 */
	SlcrUnlock();

(7)关闭cache功能

/*
	 * Flush the Caches
	 */
	Xil_DCacheFlush();

	/*
	 * Disable Data Cache
	 */
	Xil_DCacheDisable();

(8)注册异常中断

/*
	 * Register the Exception handlers
	 */
	RegisterHandlers();

这里相当于异常处理函数全部指向0地址。

Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_UNDEFINED_INT,
					(Xil_ExceptionHandler)Undef_Handler,
					(void *) 0);

	XExc_VectorTable[Exception_id].Handler = Handler;
	XExc_VectorTable[Exception_id].Data = Data;

(9)DDR读写测试,在DDR不同地址段进行读写比对

   /*
     * DDR Read/write test 
     */
	Status = DDRInitCheck();
	if (Status == XST_FAILURE) {
		fsbl_printf(DEBUG_GENERAL,"DDR_INIT_FAIL \r\n");
		/* Error Handling here */
		OutputStatus(DDR_INIT_FAIL);
		/*
		 * Calling FsblHookFallback instead of Fallback
		 * since, devcfg driver is not yet initialized
		 */
		FsblHookFallback();
	}

(10)Processor Configuration Access Port即处理器配置接口,连接软件和硬件的桥梁。

	/*
	 * PCAP initialization
	 */
	Status = InitPcap();
	if (Status == XST_FAILURE) {
		fsbl_printf(DEBUG_GENERAL,"PCAP_INIT_FAIL \n\r");
		OutputStatus(PCAP_INIT_FAIL);
		/*
		 * Calling FsblHookFallback instead of Fallback
		 * since, devcfg driver is not yet initialized
		 */
		FsblHookFallback();
	}

	fsbl_printf(DEBUG_INFO,"Devcfg driver initialized \r\n");

 

(11)获取PS版本号

/*
	 * Get the Silicon Version
	 */
	GetSiliconVersion();

(12)获取PCAP接口控制器配置信息,检查是否允许系统复位

	/*
	 * Get PCAP controller settings
	 */
	PcapCtrlRegVal = XDcfg_GetControlRegister(DcfgInstPtr);

	/*
	 * Check for AES source key
	 */
	if (PcapCtrlRegVal & XDCFG_CTRL_PCFG_AES_FUSE_MASK) {
		/*
		 * For E-Fuse AES encryption Watch dog Timer disabled and
		 * User not allowed to do system reset
		 */
#ifdef	XPAR_XWDTPS_0_BASEADDR
		fsbl_printf(DEBUG_INFO,"Watchdog Timer Disabled\r\n");
		XWdtPs_Stop(&Watchdog);
#endif
		fsbl_printf(DEBUG_INFO,"User not allowed to do "
								"any system resets\r\n");
	}

(13)配置FSBL正在执行状态

	/*
	 * Store FSBL run state in Reboot Status Register
	 */
	MarkFSBLIn();

(14)读取启动模式寄存器,启动模式是通过MIO引脚来配置的,要配置相应的启动模式可以参考下图中MIO各个引脚在不同模式的配置情况

/*
	 * Read bootmode register
	 */
	BootModeRegister = Xil_In32(BOOT_MODE_REG);
	BootModeRegister &= BOOT_MODES_MASK;

 

(15)根据启动模式初始化对应的存储设备

QSPI启动

①初始化qspi Flash

②MoveImage = QspiAccess;函数指针赋值,实现从Norflash中拷贝image到内存中

	if (BootModeRegister == QSPI_MODE) {
		fsbl_printf(DEBUG_GENERAL,"Boot mode is QSPI\n\r");
		InitQspi();
		MoveImage = QspiAccess;
		fsbl_printf(DEBUG_INFO,"QSPI Init Done \r\n");

Norlflash启动

	/*
	 * NOR BOOT MODE
	 */
	if (BootModeRegister == NOR_FLASH_MODE) {
		fsbl_printf(DEBUG_GENERAL,"Boot mode is NOR\n\r");
		/*
		 * Boot ROM always initialize the nor at lower speed
		 * This is the chance to put it to an optimum speed for your nor
		 * device
		 */
		InitNor();
		fsbl_printf(DEBUG_INFO,"NOR Init Done \r\n");
		MoveImage = NorAccess;

JTAG启动

	/*
	 * JTAG  BOOT MODE
	 */
	if (BootModeRegister == JTAG_MODE) {
		fsbl_printf(DEBUG_GENERAL,"Boot mode is JTAG\r\n");
		/*
		 * Stop the Watchdog before JTAG handoff
		 */
#ifdef	XPAR_XWDTPS_0_BASEADDR
		XWdtPs_Stop(&Watchdog);
#endif
		/*
		 * Clear our mark in reboot status register
		 */
		ClearFSBLIn();

		/*
		 * SLCR lock
		 */
		SlcrLock();

		FsblHandoffJtagExit();

(16)FlashReadBaseAddress是在上述流程中根据不同的启动设备进行初始化的。

通常情况下我们使用Norflash启动,InitQspi()函数中会对FlashReadBaseAddress赋值,就是qspi falsh的起始地址为0xFC000000,在zynq7000的数据手册UG585中可以看到。

	/*
	 * Check for valid flash address
	 */
	if ((FlashReadBaseAddress != XPS_QSPI_LINEAR_BASEADDR) &&
			(FlashReadBaseAddress != XPS_NAND_BASEADDR) &&
			(FlashReadBaseAddress != XPS_NOR_BASEADDR) &&
			(FlashReadBaseAddress != XPS_SDIO0_BASEADDR)) {
		fsbl_printf(DEBUG_GENERAL,"INVALID_FLASH_ADDRESS \r\n");
		OutputStatus(INVALID_FLASH_ADDRESS);
		FsblFallback();
	}

	/*
	 * NOR and QSPI (parallel) are linear boot devices
	 */
	if ((FlashReadBaseAddress == XPS_NOR_BASEADDR)) {
		fsbl_printf(DEBUG_INFO, "Linear Boot Device\r\n");
		LinearBootDeviceFlag = 1;
	}

(17)接下来就是最关键的地方了,这个函数做两件事情①分析烧录到qspi中的数据的头的部分②根据分析结果拷贝数据到DDR中

	/*
	 * Load boot image
	 */
	HandoffAddress = LoadBootImage();

	fsbl_printf(DEBUG_INFO,"Handoff Address: 0x%08lx\r\n",HandoffAddress);

(18)我们进入到函数LoadBootImage()中进一步分析代码

这段代码的作用是从multiboot寄存器中读取要执行的image的地址,其实如果就一个image的话可以不用管这个,这个算出来的imagestartaddress一定是0

	/*
		 * read the multiboot register
		 */
		MultiBootReg =  XDcfg_ReadReg(DcfgInstPtr->Config.BaseAddr,
				XDCFG_MULTIBOOT_ADDR_OFFSET);

		fsbl_printf(DEBUG_INFO,"Multiboot Register: 0x%08lx\r\n",MultiBootReg);

		/*
		 * Compute the image start address
		 */
		ImageStartAddress = (MultiBootReg & PCAP_MBOOT_REG_REBOOT_OFFSET_MASK)
									* GOLDEN_IMAGE_OFFSET;

(19)解析Image即BOOT.bin的头信息

①从bootloader中解析出BOOT.bin的大小(这个信息后续未看到有使用)

②把BOOT.bin中header解析出partition header并保存到全局变量PartHeader PartitionHeader[MAX_PARTITION_NUMBER]中,实际有效的只有3个partitions,即FSBL.elf,FPGA.bit,application.elf

③根据解析出的partition header数据解析出partition的数量

	/*
	 * Get partitions header information
	 */
	Status = GetPartitionHeaderInfo(ImageStartAddress);
	if (Status != XST_SUCCESS) {
		fsbl_printf(DEBUG_GENERAL, "Partition Header Load Failed\r\n");
		OutputStatus(GET_HEADER_INFO_FAIL);
		FsblFallback();
	}

PartHeader为BOOT.bin中解析出的各个partition的Header信息结构体

typedef struct StructPartHeader {
	u32 ImageWordLen;	/* 0x0 */
	u32 DataWordLen;	/* 0x4 */
	u32 PartitionWordLen;	/* 0x8 */
	u32 LoadAddr;		/* 0xC */
	u32 ExecAddr;		/* 0x10 */
	u32 PartitionStart;	/* 0x14 */
	u32 PartitionAttr;	/* 0x18 */     // 用来判断文件属性,例如FPGA.bit文件或者application.elf文件
	u32 SectionCount;	/* 0x1C */
	u32 CheckSumOffset;	/* 0x20 */
	u32 Pads1[1];
	u32 ACOffset;	/* 0x28 */
	u32 Pads2[4];
	u32 CheckSum;		/* 0x3C */
}PartHeader;

这里需要了解一下BOOT.bin的结构。
在boot.bin中从地址0-0x8BF可以分成17个部分,每个部分都有一定的含义 
1. 0x000  中断向量表 
2. 0x020  固定值 0xaa995566 
3. 0x024  固定值 0x584c4e58  ASCII: XLNX 
4. 0x028  如果是0xa5c3c5a3或者0x3a5c3c5a为加密的 
5. 0x02C  bootrom头版本号,不用管 
6. 0x030  从bootrom开始到app地址的总数(bytes) 
7. 0x034  从loadimage拷到OCM的长度 【上电后BootRom会主动把FSBL拷贝到OCM中执行】
8. 0x038  目的地址到哪儿拷贝FSBL 
9. 0x03C  开始执行的地址 
10. 0x040  同7 【此处代码逻辑中其实是把该字段的值赋给FSBL的size】
11. 0x044  0x01为固定值 
12. 0x048  校验和(从0x020-0x047)按32-bit word 相加取反 
13. 0x04C  bootgen相关 
14. 0x098  image头的表指针 
15. 0x09C  partition头的表指针 
16. 0x0A0  寄存器初始化的参数 
17. 0x8A0  fsbl user defined 
18. 0x8C0  fsbl开始的地方 

(20)拿到partition header后应该分别加载各个partition,但由于第0个partition其实就是FSBL,而我们当前其实已经在FSBL执行中了,所以不用加载直接跳过从partitionNum = 1开始加载

	/*
	 * First partition header was ignored by FSBL
	 * As it contain FSBL partition information
	 */
	PartitionNum = 1;

(21)接下来开始加载对各个partition是类似的,主要完成两部分工作:

①解析并检查各个partition header中内容的正确性

②从norflash中加载各个partiton到指定的目标地址中。(这里对FPGA.bit和application.elf有所差别)

根据partition header中属性判断当前为bit文件或者application文件

		if (PartitionAttr & ATTRIBUTE_PL_IMAGE_MASK) {
			fsbl_printf(DEBUG_INFO, "Bitstream\r\n");
			PLPartitionFlag = 1;
			PSPartitionFlag = 0;
			BitstreamFlag = 1;
		}

		if (PartitionAttr & ATTRIBUTE_PS_IMAGE_MASK) {
			fsbl_printf(DEBUG_INFO, "Application\r\n");
			PSPartitionFlag = 1;
			PLPartitionFlag = 0;
			ApplicationFlag = 1;
		}

该函数搬移partition数据到DDR中

	/*
		 * Move partitions from boot device
		 */
		Status = PartitionMove(ImageStartAddress, HeaderPtr);
		if (Status != XST_SUCCESS) {
			fsbl_printf(DEBUG_GENERAL,"PARTITION_MOVE_FAIL\r\n");
			OutputStatus(PARTITION_MOVE_FAIL);
			FsblFallback();
		}

FPGA.bit和application.elf文件都是通过下面函数依次搬移传输到DDR中

if ((LinearBootDeviceFlag && PLPartitionFlag &&
			(SignedPartitionFlag || PartitionChecksumFlag)) ||
				(LinearBootDeviceFlag && PSPartitionFlag) ||
				((!LinearBootDeviceFlag) && PSPartitionFlag && SecureTransferFlag)) {
		/*
		 * PL signed partition copied to DDR temporary location
		 * using non-secure PCAP for linear boot device
		 */
		if(PLPartitionFlag){
			SecureTransferFlag = 0;
			LoadAddr = DDR_TEMP_START_ADDR;
		}

		/*
		 * Data transfer using PCAP
		 */
		Status = PcapDataTransfer((u32*)SourceAddr,
						(u32*)LoadAddr,
						ImageWordLen,
						DataWordLen,
						SecureTransferFlag);
		if(Status != XST_SUCCESS) {
			fsbl_printf(DEBUG_GENERAL, "PCAP Data Transfer Failed\r\n");
			return XST_FAILURE;
		}

(22)如果partition为FPGA bit文件,那么通过以下函数完成从DDR中加载启动bit文件,这个函数中涉及PCAP的操作流程,这里不再深入探究。

/*
			 * Load Signed PL partition in Fabric
			 */
			if (PLPartitionFlag) {
				Status = PcapLoadPartition((u32*)PartitionStartAddr,
						(u32*)PartitionLoadAddr,
						PartitionImageLength,
						PartitionDataLength,
						EncryptedPartitionFlag);
				if (Status != XST_SUCCESS) {
					fsbl_printf(DEBUG_GENERAL,"BITSTREAM_DOWNLOAD_FAIL\r\n");
					OutputStatus(BITSTREAM_DOWNLOAD_FAIL);
					FsblFallback();
				}
			}

(23)至此函数LoadBootImage全部执行完成,当前已完成FPGA.bit加载,并且application也已经写入到DDR中。

在下面的函数中HandoffAddress应该为application partition header中的执行地址,也是application.elf保存在DDR中的基地址,即0x00100000

	/*
	 * FSBL handoff to valid handoff address or
	 * exit in JTAG
	 */
	FsblHandoff(HandoffAddress);

在该函数中最后通过FsblHandoffExit(FsblStartAddr)函数实现了FSBL到application.elf的跳转

if(FsblStartAddr == 0) {
		/*
		 * SLCR lock
		 */
		SlcrLock();

		fsbl_printf(DEBUG_INFO,"No Execution Address JTAG handoff \r\n");
		FsblHandoffJtagExit();
	} else {
		fsbl_printf(DEBUG_GENERAL,"SUCCESSFUL_HANDOFF\r\n");
		OutputStatus(SUCCESSFUL_HANDOFF);
		FsblHandoffExit(FsblStartAddr);
	}

在src/fsbl_handoff.S文件中,bx lr指令实现了跳转到application开始执行

FsblHandoffExit:
		mov	 lr, r0	/* move the destination address into link register */

		mcr	 15,0,r0,cr7,cr5,0		/* Invalidate Instruction cache */
		mcr	 15,0,r0,cr7,cr5,6		/* Invalidate branch predictor array */

		dsb
		isb					/* make sure it completes */

	ldr	r4, =0
		mcr	 15,0,r4,cr1,cr0,0		/* disable the ICache and MMU */

		isb					/* make sure it completes */


		bx		lr	/* force the switch, destination should have been in r0 */

.Ldone: b		.Ldone					/* Paranoia: we should never get here */
.end

(24)以上FSBL运行加载FPGA.bit和引导application.elf执行过程代码分析全部完成。

标签:fsbl,ZYNQ7000,FSBL,init,详解,printf,data,ps7
来源: https://blog.csdn.net/qq_40155300/article/details/118733133