张口就来!文末有惊喜
作者:互联网
正文
在实际的工作项目中, 缓存成为高并发、高性能架构的关键组件 ,那么Redis为什么可以作为缓存使用呢?首先可以作为缓存的两个主要特征:
- 在分层系统中处于内存/CPU具有访问性能良好,
- 缓存数据饱和,有良好的数据淘汰机制
由于Redis 天然就具有这两个特征,Redis基于内存操作的,且其具有完善的数据淘汰机制,十分适合作为缓存组件。
其中,基于内存操作,容量可以为32-96GB,且操作时间平均为100ns,操作效率高。而且数据淘汰机制众多,在Redis 4.0 后就有8种了促使Redis作为缓存可以适用很多场景。
那Redis缓存为什么需要数据淘汰机制呢?有哪8种数据淘汰机制呢?
数据淘汰机制
Redis缓存基于内存实现的,则其缓存其容量是有限的,当出现缓存被写满的情况,那么这时Redis该如何处理呢?
Redis对于缓存被写满的情况,Redis就需要缓存数据淘汰机制,通过一定淘汰规则将一些数据刷选出来删除,让缓存服务可再使用。那么Redis使用哪些淘汰策略进行刷选删除数据?
在Redis 4.0 之后,Redis 缓存淘汰策略6+2种,包括分成三大类:
-
不淘汰数据
- noeviction ,不进行数据淘汰,当缓存被写满后,Redis不提供服务直接返回错误。
-
在设置过期时间的键值对中,
- volatile-random ,在设置过期时间的键值对中随机删除
- volatile-ttl ,在设置过期时间的键值对,基于过期时间的先后进行删除,越早过期的越先被删除。
- volatile-lru , 基于LRU(Least Recently Used) 算法筛选设置了过期时间的键值对, 最近最少使用的原则来筛选数据
- volatile-lfu ,使用 LFU( Least Frequently Used ) 算法选择设置了过期时间的键值对, 使用频率最少的键值对,来筛选数据。
-
在所有的键值对中,
- allkeys-random, 从所有键值对中随机选择并删除数据
- allkeys-lru, 使用 LRU 算法在所有数据中进行筛选
- allkeys-lfu, 使用 LFU 算法在所有数据中进行筛选
Note: LRU( 最近最少使用,Least Recently Used)算法, LRU维护一个双向链表 ,链表的头和尾分别表示 MRU 端和 LRU 端,分别代表最近最常使用的数据和最近最不常用的数据。
LRU 算法在实际实现时,需要用链表管理所有的缓存数据,这会带来额外的空间开销。而且,当有数据被访问时,需要在链表上把该数据移动到 MRU 端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。
其中,LRU和LFU 基于Redis的对象结构redisObject的lru和refcount属性实现的:
typedef struct redisObject {
unsigned type:4;
unsigned encoding:4;
// 对象最后一次被访问的时间
unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or
* LFU data (least significant 8 bits frequency
// 引用计数 * and most significant 16 bits access time). */
int refcount;
void *ptr;
} robj;
Redis的LRU会使用redisObject的lru记录最近一次被访问的时间,随机选取参数maxmemory-samples 配置的数量作为候选集合,在其中选择 lru 属性值最小的数据淘汰出去。
在实际项目中,那么该如何选择数据淘汰机制呢?
- 优先选择 allkeys-lru算法,将最近最常访问的数据留在缓存中,提升应用的访问性能。
- 有顶置数据使用 volatile-lru算法 ,顶置数据不设置缓存过期时间,其他数据设置过期时间,基于LRU 规则进行筛选 。
在理解了Redis缓存淘汰机制后,来看看Redis作为缓存其有多少种模式呢?
Redis缓存模式
Redis缓存模式基于是否接收写请求,可以分成只读缓存和读写缓存:
只读缓存:只处理读操作,所有的更新操作都在数据库中,这样数据不会有丢失的风险。
- Cache Aside模式
读写缓存,读写操作都在缓存中执行,出现宕机故障,会导致数据丢失。缓存回写数据到数据库有分成两种同步和异步:
-
同步:访问性能偏低,其更加侧重于保证数据可靠性
- Read-Throug模式
- Write-Through模式
-
异步:有数据丢失风险,其侧重于提供低延迟访问
- Write-Behind模式
Cache Aside模式
查询数据先从缓存读取数据,如果缓存中不存在,则再到数据库中读取数据,获取到数据之后更新到缓存Cache中,但更新数据操作,会先去更新数据库种的数据,然后将缓存种的数据失效。
而且Cache Aside模式会存在并发风险:执行读操作未命中缓存,然后查询数据库中取数据,数据已经查询到还没放入缓存,同时一个更新写操作让缓存失效,然后读操作再把查询到数据加载缓存,导致缓存的脏数据。
Read/Write-Throug模式
查询数据和更新数据都直接访问缓存服务,缓存服务同步方式地将数据更新到数据库。出现脏数据的概率较低,但是就强依赖缓存,对缓存服务的稳定性有较大要求,但同步更新会导致其性能不好。
Write Behind模式
查询数据和更新数据都直接访问缓存服务,但缓存服务使用异步方式地将数据更新到数据库(通过异步任务) 速度快,效率会非常高,但是数据的一致性比较差,还可能会有数据的丢失情况,实现逻辑也较为复杂。
在实际项目开发中根据实际的业务场景需求来进行选择缓存模式。那了解上述后,我们的应用中为什么需要使用到redis缓存呢?
在应用使用Redis缓存可以提高系统性能和并发,主要体现在
- 高性能:基于内存查询,KV结构,简单逻辑运算
- 高并发: Mysql 每秒只能支持2000左右的请求,Redis轻松每秒1W以上。让80%以上查询走缓存,20%以下查询走数据库,能让系统吞吐量有很大的提高
虽然使用Redis缓存可以大大提升系统的性能,但是使用了缓存,会出现一些问题,比如,缓存与数据库双向不一致、缓存雪崩等,对于出现的这些问题该怎么解决呢?
使用缓存常见的问题
使用了缓存,会出现一些问题,主要体现在:
- 缓存与数据库双写不一致
- 缓存雪崩: Redis 缓存无法处理大量的应用请求,转移到数据库层导致数据库层的压力激增;
- 缓存穿透:访问数据不存在在Redis缓存中和数据库中,导致大量访问穿透缓存直接转移到数据库导致数据库层的压力激增;
- 缓存击穿:缓存无法处理高频热点数据,导致直接高频访问数据库导致数据库层的压力激增;
缓存与数据库数据不一致
只读缓存(Cache Aside模式)
对于只读缓存(Cache Aside模式), 读操作都发生在缓存中,数据不一致只会发生在删改操作上(新增操作不会,因为新增只会在数据库处理),当发生删改操作时,缓存将数据中标志为无效和更新数据库 。因此在更新数据库和删除缓存值的过程中,无论这两个操作的执行顺序谁先谁后,只要有一个操作失败了就会出现数据不一致的情况。
总结:心得体会
既然选择这个行业,选择了做一个程序员,也就明白只有不断学习,积累实战经验才有资格往上走,拿高薪,为自己,为父母,为以后的家能有一定的经济保障。
学习时间都是自己挤出来的,短时间或许很难看到效果,一旦坚持下来了,必然会有所改变。不如好好想想自己为什么想进入这个行业,给自己内心一个答案。
面试大厂,最基本的就是夯实的基础,不然面试官随便一问你就凉了;其次会问一些技术原理,还会看你对知识掌握的广度,最重要的还是你的思路,这是面试官比较看重的。
最后,上面这些大厂面试真题都是非常好的学习资料,通过这些面试真题能够看看自己对技术知识掌握的大概情况,从而能够给自己定一个学习方向。包括上面分享到的学习指南,你都可以从学习指南里理顺学习路线,避免低效学习。
大厂Java架构核心笔记(适合中高级程序员阅读):
学习方向。包括上面分享到的学习指南,你都可以从学习指南里理顺学习路线,避免低效学习。
大厂Java架构核心笔记(适合中高级程序员阅读):
标签:惊喜,张口,缓存,数据,数据库,Redis,LRU,淘汰,文末 来源: https://blog.csdn.net/m0_57983661/article/details/118614353