其他分享
首页 > 其他分享> > 昇腾modelzoo复现yolov4_v2.2(模型后处理)

昇腾modelzoo复现yolov4_v2.2(模型后处理)

作者:互联网

6.pth2onnx.py

import sys
import onnx
import os
import argparse
import numpy as np
import cv2
import onnxruntime
import torch

from tool.utils import *
from models import Yolov4

def detect(session, image_src):
    IN_IMAGE_H = session.get_inputs()[0].shape[2]
    IN_IMAGE_W = session.get_inputs()[0].shape[3]

    # Input
    resized = cv2.resize(image_src, (IN_IMAGE_W, IN_IMAGE_H), interpolation=cv2.INTER_LINEAR)
    img_in = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB)
    img_in = np.transpose(img_in, (2, 0, 1)).astype(np.float32)
    img_in = np.expand_dims(img_in, axis=0)
    img_in /= 255.0
    print("Shape of the network input: ", img_in.shape)

    # Compute
    input_name = session.get_inputs()[0].name

    outputs = session.run(None, {input_name: img_in})

    np.save("data/test2/conv_sbbox.npy", outputs[0])
    np.save("data/test2/conv_mbbox.npy", outputs[1])
    np.save("data/test2/conv_lbbox.npy", outputs[2])

    boxes = post_processing(img_in, 0.4, 0.6, outputs)

    num_classes = 80
    if num_classes == 20:
        namesfile = 'data/voc.names'
    elif num_classes == 80:
        namesfile = 'data/coco.names'
    else:
        namesfile = 'data/names'

    namesfile="data/dataset/coins.names"
    class_names = load_class_names(namesfile)
    plot_boxes_cv2(image_src, boxes[0], savename='result/predictions_onnx.jpg', class_names=class_names)

def transform_to_onnx(weight_file, batch_size, n_classes, IN_IMAGE_H, IN_IMAGE_W, onnx_file_name):
    
    model = Yolov4(n_classes=n_classes, inference=True)

    pretrained_dict = torch.load(weight_file, map_location=torch.device('cpu'))
    model.load_state_dict(pretrained_dict)

    input_names = ["input"]
    output_names = ['boxes', 'confs']

    dynamic = False
    if batch_size <= 0:
        dynamic = True
    
    if dynamic:
        x = torch.randn((1, 3, IN_IMAGE_H, IN_IMAGE_W), requires_grad=True)
        dynamic_axes = {"input": {0: "batch_size"}, "boxes": {0: "batch_size"}, "confs": {0: "batch_size"}}
        # Export the model
        torch.onnx.export(model,
                          x,
                          onnx_file_name,
                          export_params=True,
                          opset_version=11,
                          do_constant_folding=True,
                          input_names=input_names, output_names=output_names,
                          dynamic_axes=dynamic_axes)

        print('Onnx model exporting done')
        return onnx_file_name

    else:
        x = torch.randn((batch_size, 3, IN_IMAGE_H, IN_IMAGE_W), requires_grad=True)
        # Export the model
        print('Export the onnx model ...')
        torch.onnx.export(model,
                          x,
                          onnx_file_name,
                          export_params=True,
                          opset_version=11,
                          do_constant_folding=True,
                          input_names=input_names, output_names=output_names,
                          dynamic_axes=None)

        print('Onnx model exporting done')
        return onnx_file_name

def transform_to_onnx2(weight_file, batch_size, n_classes, IN_IMAGE_H, IN_IMAGE_W, onnx_file_name):
    model = Yolov4(n_classes=n_classes, inference=False)  # inference改为False即可去除后处理算子
    pretrained_dict = torch.load(weight_file, map_location=torch.device('cpu'))
    model.load_state_dict(pretrained_dict)
    input_names = ["input"]
    output_names = ['feature_map_1', 'feature_map_2', 'feature_map_3']  # 输出节点改为三个

    dynamic = False
    if batch_size <= 0:
        dynamic = True

    if dynamic:
        x = torch.randn((1, 3, IN_IMAGE_H, IN_IMAGE_W), requires_grad=True)
        onnx_file_name = "yolov4_-1_3_{}_{}_dynamic.onnx".format(IN_IMAGE_H, IN_IMAGE_W)
        dynamic_axes = {"input": {0: "-1"}, "feature_map_1": {0: "-1"},
                        "feature_map_2": {0: "-1"}, "feature_map_3": {0: "-1"}}
        # Export the model
        print('Export the onnx model ...')
        torch.onnx.export(model,
                          x,
                          onnx_file_name,
                          export_params=True,
                          opset_version=11,
                          do_constant_folding=True,
                          input_names=input_names, output_names=output_names,
                          dynamic_axes=dynamic_axes)
    else:
        x = torch.randn((batch_size, 3, IN_IMAGE_H, IN_IMAGE_W), requires_grad=True)
        torch.onnx.export(model,
                          x,
                          onnx_file_name,
                          export_params=True,
                          opset_version=11,
                          do_constant_folding=True,
                          input_names=input_names, output_names=output_names,
                          dynamic_axes=None)

    print('Onnx model exporting done')
    return onnx_file_name



if __name__ == '__main__':
    # 参数
    IN_IMAGE_W=416
    IN_IMAGE_H=416
    n_classes=3
    batch_size=1
    image_path="data/test/test.jpg"
    weight_file='data/model1/yolov4_20.pth'
    onnx_file_name = 'data/model1/yolov4_20_v2.onnx'

    # 转onnx
    transform_to_onnx2(weight_file, batch_size, n_classes, IN_IMAGE_H, IN_IMAGE_W, onnx_file_name)
    
    # # 检测
    # session = onnxruntime.InferenceSession(onnx_file_name)
    # image_src = cv2.imread(image_path)
    # detect(session, image_src)

7.test_onnx.py

import sys
import onnx
import os
import argparse
import numpy as np
import cv2
import onnxruntime
import torch

import colorsys
from PIL import Image, ImageDraw, ImageFont
import post_process as post_process


def letterbox_image2(image, size, letterbox):
    # INTER_NEAREST:最邻近插值,INTER_LINEAR:双线性插值,INTER_CUBIC:4x4像素邻域内的双立方插值,INTER_LANCZOS4:8x8像素邻域内的Lanczos插值
    if letterbox:
        ih, iw = image.shape[0:2]
        w, h = size
        scale = min(w/iw, h/ih)
        nw = int(iw*scale)
        nh = int(ih*scale)

        image = cv2.resize(image, (nw,nh), interpolation=cv2.INTER_LINEAR)
        img = np.ones((w, h,3),dtype=np.uint8)
        img[:,:]=128
        img[(h-nh)//2:(h-nh)//2+nh, (w-nw)//2:(w-nw)//2+nw]=image
    else:
        img = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR) 

    # cv2.imshow('img',img)
    # cv2.waitKey(0) 
    return img

def letterbox_image(image, size):
    iw, ih = image.size
    w, h = size
    scale = min(w/iw, h/ih)
    nw = int(iw*scale)
    nh = int(ih*scale)

    image = image.resize((nw,nh), Image.BICUBIC)
    new_image = Image.new('RGB', size, (128,128,128))
    new_image.paste(image, ((w-nw)//2, (h-nh)//2))
    # new_image.show()

    return new_image


if __name__ == '__main__':
    # 参数
    conf_thres=0.4
    nms_thres=0.6
    anchors_path='data/dataset/coco_anchors.names'
    classes_path='data/dataset/coins.names'

    image_path="data/test/test.jpg"
    weight_file='data/model1/yolov4_20.pth'
    onnx_file_name = 'data/model1/yolov4_20_v2.onnx'
    

    # 备注:img1是工程预处理,img2是自己写的,img3是atlas的om模型输入数据
    # letterbox=True时,img1=img2!=img3,letterbox=False时,img2=img3!=img1 (由于cv和PIL的resize不一样,有小误差)
    # img1:原代码预处理
    letterbox=False
    image_src = cv2.imread(image_path)
    img1 = cv2.cvtColor(image_src, cv2.COLOR_BGR2RGB)
    img1 = letterbox_image2(img1, (416,416), letterbox)
    img1 = np.transpose(img1, (2, 0, 1)).astype(np.float32) / 255.0
    img1 = np.expand_dims(img1, axis=0)
    print(img1.shape)

    # img2:自己写的预处理,参考yolov3的
    image_src2 = Image.open(image_path)
    if letterbox:
        crop_img = np.array(letterbox_image(image_src2, (416,416)))
    else:
        crop_img = image_src2.convert('RGB')
        crop_img = crop_img.resize((416,416), Image.BILINEAR)  #NEAREST:最低质量,BILINEAR:双线性,BICUBIC:三次样条插值,ANTIALIAS:最高质量
    
    photo = np.array(crop_img,dtype = np.float32) / 255.0
    photo = np.transpose(photo, (2, 0, 1))
    img2 = np.expand_dims(photo, axis=0)
    print(img2.shape)
    
    # # img3: om模型的数据输入,atc转换时截断到input层得到的数据
    # img3=np.load("data/test2/input.npy")
    # print(img3.shape)


    # Compute
    session = onnxruntime.InferenceSession(onnx_file_name)
    input_name = session.get_inputs()[0].name
    outputs = session.run(None, {input_name: img2})
    # print(len(outputs))
    conv_sbbox=outputs[0]
    conv_mbbox=outputs[1]
    conv_lbbox=outputs[2]

    input_size=(416, 416)
    class_names = post_process.get_class(classes_path)
    decode_sbbox=post_process.DecodeBox2(post_process.get_anchors(anchors_path)[0], len(class_names),  input_size, conv_sbbox)
    decode_mbbox=post_process.DecodeBox2(post_process.get_anchors(anchors_path)[1], len(class_names),  input_size, conv_mbbox)
    decode_lbbox=post_process.DecodeBox2(post_process.get_anchors(anchors_path)[2], len(class_names),  input_size, conv_lbbox)
    output = np.concatenate([decode_sbbox, decode_mbbox, decode_lbbox], 1)
    print(decode_sbbox.shape, decode_mbbox.shape, decode_lbbox.shape, output.shape)

    batch_detections = post_process.non_max_suppression2(output, len(class_names), conf_thres=conf_thres, nms_thres=nms_thres)
    print(batch_detections)
    try:
        batch_detections = np.array(batch_detections[0])
        bbox_nums=np.array(batch_detections[0]).shape[0]
    except:
        print("没有检测结果!")
        exit()
        
    image = Image.open(image_path)
    boxes, top_conf, top_label=post_process.Regression(batch_detections, conf_thres, image, letterbox)
    post_process.draw_box(boxes, top_conf, top_label, class_names, image)

8.tranform2.py

import cv2
import numpy as np
import os
import colorsys
from PIL import Image, ImageDraw, ImageFont
import post_process as post_process


conf_thres=0.4
nms_thres=0.6
letterbox=False
anchors_path='data/dataset/coco_anchors.names'
classes_path='data/dataset/coins.names'


if __name__ == '__main__':
    img_path="data/test/test.jpg"
    image = Image.open(img_path)
    img=post_process.get_imgges(image, letterbox)

    # model_path="data/model4/test.pth"
    # outputs=prediect(img)
    # conv_sbbox=outputs[0].detach().numpy()
    # conv_mbbox=outputs[1].detach().numpy()
    # conv_lbbox=outputs[2].detach().numpy()
    # np.save("data/test/conv_sbbox.npy", conv_sbbox)
    # np.save("data/test/conv_mbbox.npy", conv_mbbox)
    # np.save("data/test/conv_lbbox.npy", conv_lbbox)

    conv_sbbox=np.load("data/test2/conv_sbbox.npy")
    conv_mbbox=np.load("data/test2/conv_mbbox.npy")
    conv_lbbox=np.load("data/test2/conv_lbbox.npy")
    print(conv_sbbox.shape, conv_mbbox.shape, conv_lbbox.shape)

    
    input_size=(416, 416)
    class_names = post_process.get_class(classes_path)
    decode_sbbox=post_process.DecodeBox2(post_process.get_anchors(anchors_path)[0], len(class_names),  input_size, conv_sbbox)
    decode_mbbox=post_process.DecodeBox2(post_process.get_anchors(anchors_path)[1], len(class_names),  input_size, conv_mbbox)
    decode_lbbox=post_process.DecodeBox2(post_process.get_anchors(anchors_path)[2], len(class_names),  input_size, conv_lbbox)
    output = np.concatenate([decode_sbbox, decode_mbbox, decode_lbbox], 1)
    print(decode_sbbox.shape, decode_mbbox.shape, decode_lbbox.shape, output.shape)

    batch_detections = post_process.non_max_suppression2(output, len(class_names), conf_thres=conf_thres, nms_thres=nms_thres)
    print(batch_detections)
    try:
        batch_detections = np.array(batch_detections[0])
        bbox_nums=np.array(batch_detections[0]).shape[0]
    except:
        print("没有检测结果!")
        exit()

    boxes, top_conf, top_label=post_process.Regression(batch_detections, conf_thres, image, letterbox)
    post_process.draw_box(boxes, top_conf, top_label, class_names, image)


    

9.post_process.py

import cv2
import numpy as np
import os
import colorsys
from PIL import Image, ImageDraw, ImageFont



def get_class(classes_path):
    classes_path = os.path.expanduser(classes_path)
    with open(classes_path) as f:
        class_names = f.readlines()
    class_names = [c.strip() for c in class_names]
    return class_names

def get_anchors(anchors_path):
    anchors_path = os.path.expanduser(anchors_path)
    with open(anchors_path) as f:
        anchors = f.readline()
    anchors = [float(x) for x in anchors.split(',')]
    return np.array(anchors).reshape([-1, 3, 2])[::-1,:,:]

def sigmoid(x):
    x_ravel = x.ravel()  # 将numpy数组展平
    length = len(x_ravel)
    y = []
    for index in range(length):
        if x_ravel[index] >= 0:
            y.append(1.0 / (1 + np.exp(-x_ravel[index])))
        else:
            y.append(np.exp(x_ravel[index]) / (np.exp(x_ravel[index]) + 1))
    return np.array(y).reshape(x.shape)

def letterbox_image(image, size):
    iw, ih = image.size
    w, h = size
    scale = min(w/iw, h/ih)
    nw = int(iw*scale)
    nh = int(ih*scale)

    image = image.resize((nw,nh), Image.BICUBIC)
    new_image = Image.new('RGB', size, (128,128,128))
    new_image.paste(image, ((w-nw)//2, (h-nh)//2))
    return new_image

# 数据处理
def get_imgges(image, letterbox):
    if letterbox:
        crop_img = np.array(letterbox_image(image, (416,416)))
    else:
        crop_img = image.convert('RGB')
        crop_img = crop_img.resize((416,416), Image.BICUBIC)

    photo = np.array(crop_img,dtype = np.float32) / 255.0
    photo = np.transpose(photo, (2, 0, 1))
    img = [photo]
    img=np.asarray(img)

    return img


def DecodeBox2(anchors, num_classes, img_size, input):
    anchors = anchors
    num_anchors = len(anchors)
    num_classes = num_classes
    bbox_attrs = 5 + num_classes
    img_size = img_size

    batch_size = input.shape[0]
    input_height = input.shape[2]
    input_width = input.shape[3]
    # print(batch_size, input_height, input_width, input.shape)

    stride_h = img_size[1] / input_height
    stride_w = img_size[0] / input_width

    scaled_anchors = [(anchor_width / stride_w, anchor_height / stride_h) for anchor_width, anchor_height in anchors]

    # prediction = input.view(batch_size, num_anchors, bbox_attrs, input_height, input_width).permute(0, 1, 3, 4, 2).contiguous()
    a = input.reshape(batch_size, num_anchors, bbox_attrs, input_height, input_width).transpose(0, 1, 3, 4, 2)
    prediction = np.copy(a)
    # print(prediction, prediction.shape)

    # 先验框的中心位置的调整参数
    x = sigmoid(prediction[..., 0])  
    y = sigmoid(prediction[..., 1])
    # 先验框的宽高调整参数
    w = prediction[..., 2]
    h = prediction[..., 3]
    # 获得置信度,是否有物体
    conf = sigmoid(prediction[..., 4])
    # 种类置信度
    pred_cls = sigmoid(prediction[..., 5:])

    #   生成网格,先验框中心,网格左上角 
    grid_x = np.linspace(0, input_width - 1, input_width)
    grid_x = np.tile(np.tile(grid_x, (input_height, 1)), (batch_size * num_anchors, 1, 1))
    grid_x = grid_x.reshape(x.shape).astype(np.float16)

    grid_y = np.linspace(0, input_height - 1, input_height)
    grid_y = np.tile(np.tile(grid_y, (input_width, 1)).T, (batch_size * num_anchors, 1, 1))
    grid_y = grid_y.reshape(y.shape).astype(np.float16)
    # print(grid_y, grid_y.shape)

    # #   按照网格格式生成先验框的宽高 
    anchor_w = np.array(scaled_anchors).astype(np.float16)[:,0].reshape(len(scaled_anchors),1)  # len(scaled_anchors)=3
    anchor_h = np.array(scaled_anchors).astype(np.float16)[:,1].reshape(len(scaled_anchors),1)
    anchor_w = np.tile(np.tile(anchor_w, (batch_size, 1)), (1, 1, input_height * input_width)).reshape(w.shape)
    anchor_h = np.tile(np.tile(anchor_h, (batch_size, 1)), (1, 1, input_height * input_width)).reshape(h.shape)
    # print(anchor_w,anchor_h)
    # print(anchor_w.shape, anchor_h.shape)

    #----------------------------------------------------------#
    #   利用预测结果对先验框进行调整
    #   首先调整先验框的中心,从先验框中心向右下角偏移
    #   再调整先验框的宽高。
    #----------------------------------------------------------#
    pred_boxes = np.zeros(shape=prediction[..., :4].shape)
    pred_boxes[..., 0] = x.data + grid_x
    pred_boxes[..., 1] = y.data + grid_y
    pred_boxes[..., 2] = np.exp(w.data) * anchor_w
    pred_boxes[..., 3] = np.exp(h.data) * anchor_h
    # print(pred_boxes)

    #----------------------------------------------------------#
    #   将输出结果调整成相对于输入图像大小
    #----------------------------------------------------------#
    _scale=np.array([stride_w, stride_h] * 2).astype(np.float16)
    output = np.concatenate((pred_boxes.reshape(batch_size, -1, 4) * _scale,
        conf.reshape(batch_size, -1, 1), pred_cls.reshape(batch_size, -1, num_classes)), -1)
    
    return output      

def yolo_correct_boxes(top, left, bottom, right, input_shape, image_shape):
    new_shape = image_shape*np.min(input_shape/image_shape)

    offset = (input_shape-new_shape)/2./input_shape
    scale = input_shape/new_shape

    box_yx = np.concatenate(((top+bottom)/2,(left+right)/2),axis=-1)/input_shape
    box_hw = np.concatenate((bottom-top,right-left),axis=-1)/input_shape

    box_yx = (box_yx - offset) * scale
    box_hw *= scale

    box_mins = box_yx - (box_hw / 2.)
    box_maxes = box_yx + (box_hw / 2.)
    boxes =  np.concatenate([
        box_mins[:, 0:1],
        box_mins[:, 1:2],
        box_maxes[:, 0:1],
        box_maxes[:, 1:2]
    ],axis=-1)
    boxes *= np.concatenate([image_shape, image_shape],axis=-1)
    return boxes


def bbox_iou2(box1, box2, x1y1x2y2=True):
    """
        计算IOU
    """
    if not x1y1x2y2:
        b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
        b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
        b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
        b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
    else:
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]

    inter_rect_x1 = np.maximum(b1_x1, b2_x1)
    inter_rect_y1 = np.maximum(b1_y1, b2_y1)
    inter_rect_x2 = np.minimum(b1_x2, b2_x2)
    inter_rect_y2 = np.minimum(b1_y2, b2_y2)

    data1=inter_rect_x2 - inter_rect_x1 + 1
    data2=inter_rect_y2 - inter_rect_y1 + 1
    inter_area = np.clip(data1, a_min=0, a_max=max(data1)) * np.clip(data2, a_min=0, a_max=max(data2))
    
    b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1)
    b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1)

    iou = inter_area / (b1_area + b2_area - inter_area + 1e-16)

    return iou
     
def non_max_suppression2(prediction, num_classes, conf_thres=0.5, nms_thres=0.4):
    box_corner = np.zeros(shape=prediction.shape)
    box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
    box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
    box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
    box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
    prediction[:, :, :4] = box_corner[:, :, :4]

    output = [None for _ in range(len(prediction))]
    for image_i, image_pred in enumerate(prediction):
        data=image_pred[:, 5:5 + num_classes]
        class_conf=np.max(data, axis=1).reshape(len(data),1)
        class_pred=data.argmax(axis=1).reshape(len(data),1)

        #----------------------------------------------------------#
        #   利用置信度进行第一轮筛选
        #----------------------------------------------------------#
        conf_mask = (image_pred[:, 4] * class_conf[:, 0] >= conf_thres).squeeze()

        #----------------------------------------------------------#
        #   根据置信度进行预测结果的筛选
        #----------------------------------------------------------#
        image_pred = image_pred[conf_mask]
        class_conf = class_conf[conf_mask]
        class_pred = class_pred[conf_mask]

        if len(image_pred)<=0:
            continue

        # detections  [num_anchors, 7]   7的内容为:x1, y1, x2, y2, obj_conf, class_conf, class_pred
        detections = np.concatenate((image_pred[:, :5], class_conf.astype(np.float16), class_pred.astype(np.float16)), 1)

        # 获得预测结果中包含的所有种类
        unique_labels = np.unique(detections[:, -1])

        for c in unique_labels:
            detections_class = detections[detections[:, -1] == c]
            
            # # 按照存在物体的置信度排序
            conf_sort_index = np.argsort(-(detections_class[:, 4]*detections_class[:, 5]), axis=0)
            detections_class = detections_class[conf_sort_index]

            # 进行非极大抑制
            max_detections = []
            while detections_class.shape[0]>0:
                # 取出这一类置信度最高的,一步一步往下判断,判断重合程度是否大于nms_thres,如果是则去除掉
                max_detections.append(np.expand_dims(detections_class[0],axis=0))
                if len(detections_class) == 1:
                    break
                
                ious = bbox_iou2(max_detections[-1], detections_class[1:])
                detections_class = detections_class[1:][ious < nms_thres]
                
            # 堆叠
            max_detections = np.concatenate(max_detections)

            # Add max detections to outputs
            output[image_i] = max_detections if output[image_i] is None else np.concatenate((output[image_i], max_detections))

    return output

def prediect(img):
    # 模型加载
    device = torch.device('cpu')
    model=torch.load(model_path)
    model=model.to(device)

    # 模型预测
    # img = torch.from_numpy(img)
    img = torch.tensor(img, dtype=torch.float32)
    torch.no_grad()
    outputs = model(img)

    return outputs

def Regression(batch_detections, confidence, image, letterbox):
    # 检测框处理
    top_index = batch_detections[:,4] * batch_detections[:,5] > confidence
    top_conf = batch_detections[top_index,4]*batch_detections[top_index,5]
    top_label = np.array(batch_detections[top_index,-1],np.int32)
    top_bboxes = np.array(batch_detections[top_index,:4])
    top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(top_bboxes[:,0],-1),np.expand_dims(top_bboxes[:,1],-1),np.expand_dims(top_bboxes[:,2],-1),np.expand_dims(top_bboxes[:,3],-1)

    #-----------------------------------------------------------------#
    image_shape = np.array(np.shape(image)[0:2])
    if letterbox:
        boxes = yolo_correct_boxes(top_ymin,top_xmin,top_ymax,top_xmax,np.array([416,416]),image_shape)
    else:
        top_xmin = top_xmin / 416 * image_shape[1]
        top_ymin = top_ymin / 416 * image_shape[0]
        top_xmax = top_xmax / 416 * image_shape[1]
        top_ymax = top_ymax / 416 * image_shape[0]
        boxes = np.concatenate([top_ymin,top_xmin,top_ymax,top_xmax], axis=-1)

    return boxes.astype(np.int), top_conf, top_label

def draw_box(boxes, top_conf, top_label, class_names, image):
    font = ImageFont.truetype(font='model_data/simhei.ttf',size=np.floor(3e-2 * np.shape(image)[1] + 0.5).astype('int32'))
    thickness = max((np.shape(image)[0] + np.shape(image)[1]) // 416, 1)

    # 画框设置不同的颜色
    hsv_tuples = [(x / len(class_names), 1., 1.)
    for x in range(len(class_names))]
    colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
    colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),colors))

    for i, c in enumerate(top_label):
        predicted_class = class_names[c]
        score = top_conf[i]

        top, left, bottom, right = boxes[i]
        top = top - 5
        left = left - 5
        bottom = bottom + 5
        right = right + 5

        top = max(0, np.floor(top + 0.5).astype('int32'))
        left = max(0, np.floor(left + 0.5).astype('int32'))
        bottom = min(np.shape(image)[0], np.floor(bottom + 0.5).astype('int32'))
        right = min(np.shape(image)[1], np.floor(right + 0.5).astype('int32'))

        # 画框框
        label = '{} {:.2f}'.format(predicted_class, score)
        draw = ImageDraw.Draw(image)
        label_size = draw.textsize(label, font)
        label = label.encode('utf-8')
        print(label, top, left, bottom, right)
        
        if top - label_size[1] >= 0:
            text_origin = np.array([left, top - label_size[1]])
        else:
            text_origin = np.array([left, top + 1])

        for i in range(thickness):
            draw.rectangle(
                [left + i, top + i, right - i, bottom - i],
                outline=colors[class_names.index(predicted_class)])
        draw.rectangle(
            [tuple(text_origin), tuple(text_origin + label_size)],
            fill=colors[class_names.index(predicted_class)])
        draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font)
    # image.show()

标签:yolov4,img,modelzoo,image,v2.2,shape,np,input,top
来源: https://blog.csdn.net/gm_Ergou/article/details/118607094