昇腾modelzoo复现yolov4_v2.2(模型后处理)
作者:互联网
6.pth2onnx.py
import sys
import onnx
import os
import argparse
import numpy as np
import cv2
import onnxruntime
import torch
from tool.utils import *
from models import Yolov4
def detect(session, image_src):
IN_IMAGE_H = session.get_inputs()[0].shape[2]
IN_IMAGE_W = session.get_inputs()[0].shape[3]
# Input
resized = cv2.resize(image_src, (IN_IMAGE_W, IN_IMAGE_H), interpolation=cv2.INTER_LINEAR)
img_in = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB)
img_in = np.transpose(img_in, (2, 0, 1)).astype(np.float32)
img_in = np.expand_dims(img_in, axis=0)
img_in /= 255.0
print("Shape of the network input: ", img_in.shape)
# Compute
input_name = session.get_inputs()[0].name
outputs = session.run(None, {input_name: img_in})
np.save("data/test2/conv_sbbox.npy", outputs[0])
np.save("data/test2/conv_mbbox.npy", outputs[1])
np.save("data/test2/conv_lbbox.npy", outputs[2])
boxes = post_processing(img_in, 0.4, 0.6, outputs)
num_classes = 80
if num_classes == 20:
namesfile = 'data/voc.names'
elif num_classes == 80:
namesfile = 'data/coco.names'
else:
namesfile = 'data/names'
namesfile="data/dataset/coins.names"
class_names = load_class_names(namesfile)
plot_boxes_cv2(image_src, boxes[0], savename='result/predictions_onnx.jpg', class_names=class_names)
def transform_to_onnx(weight_file, batch_size, n_classes, IN_IMAGE_H, IN_IMAGE_W, onnx_file_name):
model = Yolov4(n_classes=n_classes, inference=True)
pretrained_dict = torch.load(weight_file, map_location=torch.device('cpu'))
model.load_state_dict(pretrained_dict)
input_names = ["input"]
output_names = ['boxes', 'confs']
dynamic = False
if batch_size <= 0:
dynamic = True
if dynamic:
x = torch.randn((1, 3, IN_IMAGE_H, IN_IMAGE_W), requires_grad=True)
dynamic_axes = {"input": {0: "batch_size"}, "boxes": {0: "batch_size"}, "confs": {0: "batch_size"}}
# Export the model
torch.onnx.export(model,
x,
onnx_file_name,
export_params=True,
opset_version=11,
do_constant_folding=True,
input_names=input_names, output_names=output_names,
dynamic_axes=dynamic_axes)
print('Onnx model exporting done')
return onnx_file_name
else:
x = torch.randn((batch_size, 3, IN_IMAGE_H, IN_IMAGE_W), requires_grad=True)
# Export the model
print('Export the onnx model ...')
torch.onnx.export(model,
x,
onnx_file_name,
export_params=True,
opset_version=11,
do_constant_folding=True,
input_names=input_names, output_names=output_names,
dynamic_axes=None)
print('Onnx model exporting done')
return onnx_file_name
def transform_to_onnx2(weight_file, batch_size, n_classes, IN_IMAGE_H, IN_IMAGE_W, onnx_file_name):
model = Yolov4(n_classes=n_classes, inference=False) # inference改为False即可去除后处理算子
pretrained_dict = torch.load(weight_file, map_location=torch.device('cpu'))
model.load_state_dict(pretrained_dict)
input_names = ["input"]
output_names = ['feature_map_1', 'feature_map_2', 'feature_map_3'] # 输出节点改为三个
dynamic = False
if batch_size <= 0:
dynamic = True
if dynamic:
x = torch.randn((1, 3, IN_IMAGE_H, IN_IMAGE_W), requires_grad=True)
onnx_file_name = "yolov4_-1_3_{}_{}_dynamic.onnx".format(IN_IMAGE_H, IN_IMAGE_W)
dynamic_axes = {"input": {0: "-1"}, "feature_map_1": {0: "-1"},
"feature_map_2": {0: "-1"}, "feature_map_3": {0: "-1"}}
# Export the model
print('Export the onnx model ...')
torch.onnx.export(model,
x,
onnx_file_name,
export_params=True,
opset_version=11,
do_constant_folding=True,
input_names=input_names, output_names=output_names,
dynamic_axes=dynamic_axes)
else:
x = torch.randn((batch_size, 3, IN_IMAGE_H, IN_IMAGE_W), requires_grad=True)
torch.onnx.export(model,
x,
onnx_file_name,
export_params=True,
opset_version=11,
do_constant_folding=True,
input_names=input_names, output_names=output_names,
dynamic_axes=None)
print('Onnx model exporting done')
return onnx_file_name
if __name__ == '__main__':
# 参数
IN_IMAGE_W=416
IN_IMAGE_H=416
n_classes=3
batch_size=1
image_path="data/test/test.jpg"
weight_file='data/model1/yolov4_20.pth'
onnx_file_name = 'data/model1/yolov4_20_v2.onnx'
# 转onnx
transform_to_onnx2(weight_file, batch_size, n_classes, IN_IMAGE_H, IN_IMAGE_W, onnx_file_name)
# # 检测
# session = onnxruntime.InferenceSession(onnx_file_name)
# image_src = cv2.imread(image_path)
# detect(session, image_src)
7.test_onnx.py
import sys
import onnx
import os
import argparse
import numpy as np
import cv2
import onnxruntime
import torch
import colorsys
from PIL import Image, ImageDraw, ImageFont
import post_process as post_process
def letterbox_image2(image, size, letterbox):
# INTER_NEAREST:最邻近插值,INTER_LINEAR:双线性插值,INTER_CUBIC:4x4像素邻域内的双立方插值,INTER_LANCZOS4:8x8像素邻域内的Lanczos插值
if letterbox:
ih, iw = image.shape[0:2]
w, h = size
scale = min(w/iw, h/ih)
nw = int(iw*scale)
nh = int(ih*scale)
image = cv2.resize(image, (nw,nh), interpolation=cv2.INTER_LINEAR)
img = np.ones((w, h,3),dtype=np.uint8)
img[:,:]=128
img[(h-nh)//2:(h-nh)//2+nh, (w-nw)//2:(w-nw)//2+nw]=image
else:
img = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR)
# cv2.imshow('img',img)
# cv2.waitKey(0)
return img
def letterbox_image(image, size):
iw, ih = image.size
w, h = size
scale = min(w/iw, h/ih)
nw = int(iw*scale)
nh = int(ih*scale)
image = image.resize((nw,nh), Image.BICUBIC)
new_image = Image.new('RGB', size, (128,128,128))
new_image.paste(image, ((w-nw)//2, (h-nh)//2))
# new_image.show()
return new_image
if __name__ == '__main__':
# 参数
conf_thres=0.4
nms_thres=0.6
anchors_path='data/dataset/coco_anchors.names'
classes_path='data/dataset/coins.names'
image_path="data/test/test.jpg"
weight_file='data/model1/yolov4_20.pth'
onnx_file_name = 'data/model1/yolov4_20_v2.onnx'
# 备注:img1是工程预处理,img2是自己写的,img3是atlas的om模型输入数据
# letterbox=True时,img1=img2!=img3,letterbox=False时,img2=img3!=img1 (由于cv和PIL的resize不一样,有小误差)
# img1:原代码预处理
letterbox=False
image_src = cv2.imread(image_path)
img1 = cv2.cvtColor(image_src, cv2.COLOR_BGR2RGB)
img1 = letterbox_image2(img1, (416,416), letterbox)
img1 = np.transpose(img1, (2, 0, 1)).astype(np.float32) / 255.0
img1 = np.expand_dims(img1, axis=0)
print(img1.shape)
# img2:自己写的预处理,参考yolov3的
image_src2 = Image.open(image_path)
if letterbox:
crop_img = np.array(letterbox_image(image_src2, (416,416)))
else:
crop_img = image_src2.convert('RGB')
crop_img = crop_img.resize((416,416), Image.BILINEAR) #NEAREST:最低质量,BILINEAR:双线性,BICUBIC:三次样条插值,ANTIALIAS:最高质量
photo = np.array(crop_img,dtype = np.float32) / 255.0
photo = np.transpose(photo, (2, 0, 1))
img2 = np.expand_dims(photo, axis=0)
print(img2.shape)
# # img3: om模型的数据输入,atc转换时截断到input层得到的数据
# img3=np.load("data/test2/input.npy")
# print(img3.shape)
# Compute
session = onnxruntime.InferenceSession(onnx_file_name)
input_name = session.get_inputs()[0].name
outputs = session.run(None, {input_name: img2})
# print(len(outputs))
conv_sbbox=outputs[0]
conv_mbbox=outputs[1]
conv_lbbox=outputs[2]
input_size=(416, 416)
class_names = post_process.get_class(classes_path)
decode_sbbox=post_process.DecodeBox2(post_process.get_anchors(anchors_path)[0], len(class_names), input_size, conv_sbbox)
decode_mbbox=post_process.DecodeBox2(post_process.get_anchors(anchors_path)[1], len(class_names), input_size, conv_mbbox)
decode_lbbox=post_process.DecodeBox2(post_process.get_anchors(anchors_path)[2], len(class_names), input_size, conv_lbbox)
output = np.concatenate([decode_sbbox, decode_mbbox, decode_lbbox], 1)
print(decode_sbbox.shape, decode_mbbox.shape, decode_lbbox.shape, output.shape)
batch_detections = post_process.non_max_suppression2(output, len(class_names), conf_thres=conf_thres, nms_thres=nms_thres)
print(batch_detections)
try:
batch_detections = np.array(batch_detections[0])
bbox_nums=np.array(batch_detections[0]).shape[0]
except:
print("没有检测结果!")
exit()
image = Image.open(image_path)
boxes, top_conf, top_label=post_process.Regression(batch_detections, conf_thres, image, letterbox)
post_process.draw_box(boxes, top_conf, top_label, class_names, image)
8.tranform2.py
import cv2
import numpy as np
import os
import colorsys
from PIL import Image, ImageDraw, ImageFont
import post_process as post_process
conf_thres=0.4
nms_thres=0.6
letterbox=False
anchors_path='data/dataset/coco_anchors.names'
classes_path='data/dataset/coins.names'
if __name__ == '__main__':
img_path="data/test/test.jpg"
image = Image.open(img_path)
img=post_process.get_imgges(image, letterbox)
# model_path="data/model4/test.pth"
# outputs=prediect(img)
# conv_sbbox=outputs[0].detach().numpy()
# conv_mbbox=outputs[1].detach().numpy()
# conv_lbbox=outputs[2].detach().numpy()
# np.save("data/test/conv_sbbox.npy", conv_sbbox)
# np.save("data/test/conv_mbbox.npy", conv_mbbox)
# np.save("data/test/conv_lbbox.npy", conv_lbbox)
conv_sbbox=np.load("data/test2/conv_sbbox.npy")
conv_mbbox=np.load("data/test2/conv_mbbox.npy")
conv_lbbox=np.load("data/test2/conv_lbbox.npy")
print(conv_sbbox.shape, conv_mbbox.shape, conv_lbbox.shape)
input_size=(416, 416)
class_names = post_process.get_class(classes_path)
decode_sbbox=post_process.DecodeBox2(post_process.get_anchors(anchors_path)[0], len(class_names), input_size, conv_sbbox)
decode_mbbox=post_process.DecodeBox2(post_process.get_anchors(anchors_path)[1], len(class_names), input_size, conv_mbbox)
decode_lbbox=post_process.DecodeBox2(post_process.get_anchors(anchors_path)[2], len(class_names), input_size, conv_lbbox)
output = np.concatenate([decode_sbbox, decode_mbbox, decode_lbbox], 1)
print(decode_sbbox.shape, decode_mbbox.shape, decode_lbbox.shape, output.shape)
batch_detections = post_process.non_max_suppression2(output, len(class_names), conf_thres=conf_thres, nms_thres=nms_thres)
print(batch_detections)
try:
batch_detections = np.array(batch_detections[0])
bbox_nums=np.array(batch_detections[0]).shape[0]
except:
print("没有检测结果!")
exit()
boxes, top_conf, top_label=post_process.Regression(batch_detections, conf_thres, image, letterbox)
post_process.draw_box(boxes, top_conf, top_label, class_names, image)
9.post_process.py
import cv2
import numpy as np
import os
import colorsys
from PIL import Image, ImageDraw, ImageFont
def get_class(classes_path):
classes_path = os.path.expanduser(classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def get_anchors(anchors_path):
anchors_path = os.path.expanduser(anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape([-1, 3, 2])[::-1,:,:]
def sigmoid(x):
x_ravel = x.ravel() # 将numpy数组展平
length = len(x_ravel)
y = []
for index in range(length):
if x_ravel[index] >= 0:
y.append(1.0 / (1 + np.exp(-x_ravel[index])))
else:
y.append(np.exp(x_ravel[index]) / (np.exp(x_ravel[index]) + 1))
return np.array(y).reshape(x.shape)
def letterbox_image(image, size):
iw, ih = image.size
w, h = size
scale = min(w/iw, h/ih)
nw = int(iw*scale)
nh = int(ih*scale)
image = image.resize((nw,nh), Image.BICUBIC)
new_image = Image.new('RGB', size, (128,128,128))
new_image.paste(image, ((w-nw)//2, (h-nh)//2))
return new_image
# 数据处理
def get_imgges(image, letterbox):
if letterbox:
crop_img = np.array(letterbox_image(image, (416,416)))
else:
crop_img = image.convert('RGB')
crop_img = crop_img.resize((416,416), Image.BICUBIC)
photo = np.array(crop_img,dtype = np.float32) / 255.0
photo = np.transpose(photo, (2, 0, 1))
img = [photo]
img=np.asarray(img)
return img
def DecodeBox2(anchors, num_classes, img_size, input):
anchors = anchors
num_anchors = len(anchors)
num_classes = num_classes
bbox_attrs = 5 + num_classes
img_size = img_size
batch_size = input.shape[0]
input_height = input.shape[2]
input_width = input.shape[3]
# print(batch_size, input_height, input_width, input.shape)
stride_h = img_size[1] / input_height
stride_w = img_size[0] / input_width
scaled_anchors = [(anchor_width / stride_w, anchor_height / stride_h) for anchor_width, anchor_height in anchors]
# prediction = input.view(batch_size, num_anchors, bbox_attrs, input_height, input_width).permute(0, 1, 3, 4, 2).contiguous()
a = input.reshape(batch_size, num_anchors, bbox_attrs, input_height, input_width).transpose(0, 1, 3, 4, 2)
prediction = np.copy(a)
# print(prediction, prediction.shape)
# 先验框的中心位置的调整参数
x = sigmoid(prediction[..., 0])
y = sigmoid(prediction[..., 1])
# 先验框的宽高调整参数
w = prediction[..., 2]
h = prediction[..., 3]
# 获得置信度,是否有物体
conf = sigmoid(prediction[..., 4])
# 种类置信度
pred_cls = sigmoid(prediction[..., 5:])
# 生成网格,先验框中心,网格左上角
grid_x = np.linspace(0, input_width - 1, input_width)
grid_x = np.tile(np.tile(grid_x, (input_height, 1)), (batch_size * num_anchors, 1, 1))
grid_x = grid_x.reshape(x.shape).astype(np.float16)
grid_y = np.linspace(0, input_height - 1, input_height)
grid_y = np.tile(np.tile(grid_y, (input_width, 1)).T, (batch_size * num_anchors, 1, 1))
grid_y = grid_y.reshape(y.shape).astype(np.float16)
# print(grid_y, grid_y.shape)
# # 按照网格格式生成先验框的宽高
anchor_w = np.array(scaled_anchors).astype(np.float16)[:,0].reshape(len(scaled_anchors),1) # len(scaled_anchors)=3
anchor_h = np.array(scaled_anchors).astype(np.float16)[:,1].reshape(len(scaled_anchors),1)
anchor_w = np.tile(np.tile(anchor_w, (batch_size, 1)), (1, 1, input_height * input_width)).reshape(w.shape)
anchor_h = np.tile(np.tile(anchor_h, (batch_size, 1)), (1, 1, input_height * input_width)).reshape(h.shape)
# print(anchor_w,anchor_h)
# print(anchor_w.shape, anchor_h.shape)
#----------------------------------------------------------#
# 利用预测结果对先验框进行调整
# 首先调整先验框的中心,从先验框中心向右下角偏移
# 再调整先验框的宽高。
#----------------------------------------------------------#
pred_boxes = np.zeros(shape=prediction[..., :4].shape)
pred_boxes[..., 0] = x.data + grid_x
pred_boxes[..., 1] = y.data + grid_y
pred_boxes[..., 2] = np.exp(w.data) * anchor_w
pred_boxes[..., 3] = np.exp(h.data) * anchor_h
# print(pred_boxes)
#----------------------------------------------------------#
# 将输出结果调整成相对于输入图像大小
#----------------------------------------------------------#
_scale=np.array([stride_w, stride_h] * 2).astype(np.float16)
output = np.concatenate((pred_boxes.reshape(batch_size, -1, 4) * _scale,
conf.reshape(batch_size, -1, 1), pred_cls.reshape(batch_size, -1, num_classes)), -1)
return output
def yolo_correct_boxes(top, left, bottom, right, input_shape, image_shape):
new_shape = image_shape*np.min(input_shape/image_shape)
offset = (input_shape-new_shape)/2./input_shape
scale = input_shape/new_shape
box_yx = np.concatenate(((top+bottom)/2,(left+right)/2),axis=-1)/input_shape
box_hw = np.concatenate((bottom-top,right-left),axis=-1)/input_shape
box_yx = (box_yx - offset) * scale
box_hw *= scale
box_mins = box_yx - (box_hw / 2.)
box_maxes = box_yx + (box_hw / 2.)
boxes = np.concatenate([
box_mins[:, 0:1],
box_mins[:, 1:2],
box_maxes[:, 0:1],
box_maxes[:, 1:2]
],axis=-1)
boxes *= np.concatenate([image_shape, image_shape],axis=-1)
return boxes
def bbox_iou2(box1, box2, x1y1x2y2=True):
"""
计算IOU
"""
if not x1y1x2y2:
b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
else:
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
inter_rect_x1 = np.maximum(b1_x1, b2_x1)
inter_rect_y1 = np.maximum(b1_y1, b2_y1)
inter_rect_x2 = np.minimum(b1_x2, b2_x2)
inter_rect_y2 = np.minimum(b1_y2, b2_y2)
data1=inter_rect_x2 - inter_rect_x1 + 1
data2=inter_rect_y2 - inter_rect_y1 + 1
inter_area = np.clip(data1, a_min=0, a_max=max(data1)) * np.clip(data2, a_min=0, a_max=max(data2))
b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1)
b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1)
iou = inter_area / (b1_area + b2_area - inter_area + 1e-16)
return iou
def non_max_suppression2(prediction, num_classes, conf_thres=0.5, nms_thres=0.4):
box_corner = np.zeros(shape=prediction.shape)
box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
prediction[:, :, :4] = box_corner[:, :, :4]
output = [None for _ in range(len(prediction))]
for image_i, image_pred in enumerate(prediction):
data=image_pred[:, 5:5 + num_classes]
class_conf=np.max(data, axis=1).reshape(len(data),1)
class_pred=data.argmax(axis=1).reshape(len(data),1)
#----------------------------------------------------------#
# 利用置信度进行第一轮筛选
#----------------------------------------------------------#
conf_mask = (image_pred[:, 4] * class_conf[:, 0] >= conf_thres).squeeze()
#----------------------------------------------------------#
# 根据置信度进行预测结果的筛选
#----------------------------------------------------------#
image_pred = image_pred[conf_mask]
class_conf = class_conf[conf_mask]
class_pred = class_pred[conf_mask]
if len(image_pred)<=0:
continue
# detections [num_anchors, 7] 7的内容为:x1, y1, x2, y2, obj_conf, class_conf, class_pred
detections = np.concatenate((image_pred[:, :5], class_conf.astype(np.float16), class_pred.astype(np.float16)), 1)
# 获得预测结果中包含的所有种类
unique_labels = np.unique(detections[:, -1])
for c in unique_labels:
detections_class = detections[detections[:, -1] == c]
# # 按照存在物体的置信度排序
conf_sort_index = np.argsort(-(detections_class[:, 4]*detections_class[:, 5]), axis=0)
detections_class = detections_class[conf_sort_index]
# 进行非极大抑制
max_detections = []
while detections_class.shape[0]>0:
# 取出这一类置信度最高的,一步一步往下判断,判断重合程度是否大于nms_thres,如果是则去除掉
max_detections.append(np.expand_dims(detections_class[0],axis=0))
if len(detections_class) == 1:
break
ious = bbox_iou2(max_detections[-1], detections_class[1:])
detections_class = detections_class[1:][ious < nms_thres]
# 堆叠
max_detections = np.concatenate(max_detections)
# Add max detections to outputs
output[image_i] = max_detections if output[image_i] is None else np.concatenate((output[image_i], max_detections))
return output
def prediect(img):
# 模型加载
device = torch.device('cpu')
model=torch.load(model_path)
model=model.to(device)
# 模型预测
# img = torch.from_numpy(img)
img = torch.tensor(img, dtype=torch.float32)
torch.no_grad()
outputs = model(img)
return outputs
def Regression(batch_detections, confidence, image, letterbox):
# 检测框处理
top_index = batch_detections[:,4] * batch_detections[:,5] > confidence
top_conf = batch_detections[top_index,4]*batch_detections[top_index,5]
top_label = np.array(batch_detections[top_index,-1],np.int32)
top_bboxes = np.array(batch_detections[top_index,:4])
top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(top_bboxes[:,0],-1),np.expand_dims(top_bboxes[:,1],-1),np.expand_dims(top_bboxes[:,2],-1),np.expand_dims(top_bboxes[:,3],-1)
#-----------------------------------------------------------------#
image_shape = np.array(np.shape(image)[0:2])
if letterbox:
boxes = yolo_correct_boxes(top_ymin,top_xmin,top_ymax,top_xmax,np.array([416,416]),image_shape)
else:
top_xmin = top_xmin / 416 * image_shape[1]
top_ymin = top_ymin / 416 * image_shape[0]
top_xmax = top_xmax / 416 * image_shape[1]
top_ymax = top_ymax / 416 * image_shape[0]
boxes = np.concatenate([top_ymin,top_xmin,top_ymax,top_xmax], axis=-1)
return boxes.astype(np.int), top_conf, top_label
def draw_box(boxes, top_conf, top_label, class_names, image):
font = ImageFont.truetype(font='model_data/simhei.ttf',size=np.floor(3e-2 * np.shape(image)[1] + 0.5).astype('int32'))
thickness = max((np.shape(image)[0] + np.shape(image)[1]) // 416, 1)
# 画框设置不同的颜色
hsv_tuples = [(x / len(class_names), 1., 1.)
for x in range(len(class_names))]
colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),colors))
for i, c in enumerate(top_label):
predicted_class = class_names[c]
score = top_conf[i]
top, left, bottom, right = boxes[i]
top = top - 5
left = left - 5
bottom = bottom + 5
right = right + 5
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(np.shape(image)[0], np.floor(bottom + 0.5).astype('int32'))
right = min(np.shape(image)[1], np.floor(right + 0.5).astype('int32'))
# 画框框
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
label = label.encode('utf-8')
print(label, top, left, bottom, right)
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
for i in range(thickness):
draw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=colors[class_names.index(predicted_class)])
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=colors[class_names.index(predicted_class)])
draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font)
# image.show()
标签:yolov4,img,modelzoo,image,v2.2,shape,np,input,top 来源: https://blog.csdn.net/gm_Ergou/article/details/118607094