9 数据结构课程设计小组任务9:获取AOE网的关键路径
作者:互联网
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
#include <sstream>
#include <stack>
#include <map>
#include <ctime>
#include <array>
#include <set>
#include <list>
using namespace std;
//边的定义
template<class TypeOfEdge>
struct Edge_pair
{
int point = 0;
TypeOfEdge length = 0;
//=================
};
//顶点的定义
template<class TypeOfVer, class TypeOfEdge>
struct verNode
{
TypeOfVer ver_data;
int V_E,V_L;
list<Edge_pair<TypeOfEdge> > group;
//构造函数,默认会讲头指针设为空.
verNode()
{
group.clear();
//ver_data = 0;
}
//取得结点值(顶点) 估计是为了安全吧???
TypeOfVer getVer()
{
return ver_data;
}
//取得对应的边表
list<Edge_pair<TypeOfEdge> > getHead()
{
return group;
}
//设置结点值(顶点集) 估计是为了安全吧???
void setdata(TypeOfVer value)
{
ver_data = value;
return;
}
//=====================================================
void creat_Point(int new_point, TypeOfEdge new_length)
{
Edge_pair<TypeOfEdge> Next_p;
Next_p.point = new_point;
Next_p.length = new_length;
group.insert(group.begin(), Next_p);
return;
}
//删除指定位置顶点
void del_Point(int n)
{
return;
}
};
template <class TypeOfVer, class TypeOfEdge>//顶点元素类型,边权值类型
class adjlist_graph {
private:
int Vers;//顶点数
int Edges;//边数
vector<verNode<TypeOfVer, TypeOfEdge> >ver;//顶点存储
string GraphKind;//图的种类标志
bool have_dir = false, have_w = false;//图类型参数
public:
//一个空的构造函数
adjlist_graph()
{
Edges = 0;
Vers = 0;
}
//假的析构函数
~adjlist_graph()
{
;//你电脑内存就640K吗?
}
//判断图空否
bool GraphisEmpty()
{
return Vers == 0;
}
//获取图的类型
string GetGraphKind()
{
return GraphKind;
}
//取得当前顶点数
int GetVerNum()
{
return Vers;
}
//取得当前边数
int GetEdgeNum()
{
return Edges;
}
//自动建立临接表
bool Auto_build(void)
{
//DG(有向图), DN(有向网), UDG(无向图), UDN(无向网)
/*第一行:图的类型 DN UDN
第二行:结点数
第三行:结点集
第四行:无边标记
第五行:边数
第六行:边集
第七行:权集*/
/*第一行:图的类型 DG UDG
第二行:结点数
第三行:结点集
第四行:边数
第五行:边集*/
cin >> GraphKind;//图的类型
cin >> Vers;//结点数
ver.resize(Vers);//开辟节点空间
for (int i = 0; i < Vers; i++)//结点集
{
TypeOfVer now;
cin >> now;
ver[i].setdata(now);
}
cin >> Edges;//边数
vector<int> x_p, y_p, w_p;
for (int i = 0; i < Edges; i++)
{
int c_x, c_y;
cin >> c_x >> c_y;
x_p.push_back(c_x);
y_p.push_back(c_y);
}
//图的类型识别
if (GraphKind == "DG")//DG(有向图)
have_dir = true, have_w = false;
if (GraphKind == "DN")//DN(有向网)
have_dir = true, have_w = true;
if (GraphKind == "UDG")//UDG(无向图)
have_dir = false, have_w = false;
if (GraphKind == "UDN")//UDN(无向网)
have_dir = false, have_w = true;
if (have_w)
for (int i = 0; i < Edges; i++)
{
int c_w;
cin >> c_w;
w_p.push_back(c_w);
}
for (int i = 0; i < Edges; i++)
{
if (have_dir)
if (have_w)
ver[x_p[i]].creat_Point(y_p[i], w_p[i]);
else
ver[x_p[i]].creat_Point(y_p[i], 0);
else
if (have_w)
ver[x_p[i]].creat_Point(y_p[i], w_p[i]), ver[y_p[i]].creat_Point(x_p[i], w_p[i]);
else
ver[x_p[i]].creat_Point(y_p[i], 0), ver[y_p[i]].creat_Point(x_p[i], 0);
}
return 1;
}
//取得G顶点的组
vector<TypeOfVer> GetVer(void)
{
vector<TypeOfVer> head_group;
for (int i = 0; i < Vers; i++)
{
head_group.push_back(ver[i].getVer());
}
return head_group;
}
//输出邻接表
bool Print_photo()
{
int i;
for (i = 0; i < Vers; i++)
{
cout << ver[i].getVer();
if (ver[i].group.size() != 0)
cout << "->";
else
{
cout << endl;
continue;
}
vector<Edge_pair<TypeOfEdge> > out_lis;
out_lis.clear();
for (auto j = ver[i].group.begin(); j != ver[i].group.end(); j++)
{
out_lis.push_back(*j);
}
int j;
for (j = 0; j < out_lis.size() - 1; j++)
if (have_w)
cout << out_lis[j].point << "(" << out_lis[j].length << ")" << "->";
else
cout << out_lis[j].point << "->";
if (have_w)
cout << out_lis[j].point << "(" << out_lis[j].length << ")" << endl;
else
cout << out_lis[j].point << endl;
}
return 1;
}
//返回G中指定顶点u的第一个邻接顶点的位序(顶点集)。若顶点在G中没有邻接顶点,则返回-1
int GetFirst_AdjVex(int u)
{
if(ver[u].group.empty())
return -1;
return ver[u].group.begin()->point;
}
//返回G中指定顶点u的下一个邻接顶点(相对于v)的位序(顶点集)。若顶点在G中没有邻接顶点,则返回false
int GetNext_AdjVex(int u, int v)
{
if (ver[u].group.size() == 1)
return -1;
for (auto i = ver[u].group.begin(); i != ver[u].group.end(); i++)
{
if (i->point == v)
{
if ((++i) == ver[u].group.end())
return -1;
return i->point;
}
}
return -1;
}
//是否存在边
bool look_Edge(int u, int v)
{
if (!(0 <= u && u < Vers))
return false;
if (!(0 <= v && v < Vers))
return false;
if (u == v)
return false;
for (auto i = ver[u].group.begin(); i != ver[u].group.end(); i++)
{
if (i->point == v)
return true;
}
for (auto i = ver[v].group.begin(); i != ver[v].group.end(); i++)
{
if (i->point == u)
return true;
}
return false;
}
//两个顶点之间的边的权值 失败返回-1
int Get_legthOfEdge(int u, int v)
{
if (!have_w)
return -1;
if (!(0 <= u && u < Vers))
return -1;
if (!(0 <= v && v < Vers))
return -1;
if (u == v)
return -1;
for (auto i = ver[u].group.begin(); i != ver[u].group.end(); i++)
{
if (i->point == v)
return i->length;
}
return -1;
}
//获取一个顶点的入度
int Search_enterDegree(int p)
{
if (!(0 <= p && p < Vers))
return -1;
if (!have_dir)//is 无向图
return ver[p].group.size();
int cnt = 0;
for (int i = 0; i < Vers; i++)
{
if(i!=p)
for (auto j = ver[i].group.begin(); j != ver[i].group.end(); j++)
{
if (j->point == p)
cnt++;
}
}
//cnt += ver[p].group.size();
return cnt;
}
//拓扑排序并判断有无回路 0 有 1 无
vector<int> sort_list;//the way of sort
bool TopologicalSort(void)
{
if (Edges == 0)
return 0;
int i, j;
//将各个顶点的入度存在indegree
vector<int> indegree;
indegree.clear();
//------
for (i = 0; i < Vers; i++)
indegree.push_back(Search_enterDegree(i));
//------
//入度为0,进栈。
queue<int> S;
//------
for (i = 0; i < indegree.size(); i++)
if (indegree[i] == 0)
S.push(i);
//------
//BFS
while (!S.empty())
{
int now;
now = S.front();
S.pop();
sort_list.push_back(now);
int next_p;
next_p = GetFirst_AdjVex(now);//获取now的第一个相邻的点
while (next_p != -1)
{
--indegree[next_p];
if (indegree[next_p] == 0)
S.push(next_p);
/*if (indegree[next_p] == -1)
S.push(next_p);*/
next_p = GetNext_AdjVex(now, next_p);
}
}
if (sort_list.size() == 0)
return 0;
if (sort_list.size() < Vers)
return 0;
return 1;
}
///==============
//get the V_E and V_L;
bool get_VeAndVl(void)///获取最早和最迟发生
{
int i,j,k;
if(!TopologicalSort())///判断是否合法
return false;
//=======================最早发生
for(i=0;i<Vers;i++)
ver[i].V_E=0;
for(i=0;i<Vers;i++)
{
int now=sort_list[i];
int next_p;
next_p = GetFirst_AdjVex(now);
while (next_p != -1)
{
///获取一个最大值
ver[next_p].V_E=max(ver[next_p].V_E,ver[now].V_E+Get_legthOfEdge(now,next_p));
next_p = GetNext_AdjVex(now, next_p);
}
}
///=============最迟发生
for(i=0;i<Vers;i++)
ver[i].V_L=ver[Vers-1].V_E;
//---
for(i=Vers-1;i>=0;i--)
{
int now=sort_list[i];
int next_p;
next_p = GetFirst_AdjVex(now);
while (next_p != -1)
{
///获取一个最大值
ver[now].V_L=min(ver[now].V_L,ver[next_p].V_L-Get_legthOfEdge(now,next_p));
//-----
next_p = GetNext_AdjVex(now, next_p);
}
}
///out put=======================
for(i=0;i<Vers;i++)
cout<<ver[i].ver_data<<"\t"<<ver[i].V_E<<"\t"<<ver[i].V_L<<endl;
return true;
}
struct pairOf_Edge{
int x,y;
int E,L;
};
vector<pairOf_Edge> open_way;
bool get_EandL(void)///获取最早和最迟发生
{
int i;
for(i=0;i<Vers;i++)
{
int next_p;
next_p = GetFirst_AdjVex(i);
while (next_p != -1)
{
///获取一个最大值
pairOf_Edge the_new;
the_new.x=i;
the_new.y=next_p;
the_new.E=ver[i].V_E;
the_new.L=ver[next_p].V_L-Get_legthOfEdge(i,next_p);
open_way.push_back(the_new);///存储起来
//-----
next_p = GetNext_AdjVex(i, next_p);
}
}
for(i=0;i<open_way.size();i++)
{
cout<<"<"<<ver[open_way[i].x].ver_data<<",";
cout<<ver[open_way[i].y].ver_data<<">\t";
cout<<open_way[i].E<<"\t"<<open_way[i].L<<endl;
}
cout<<endl;
vector<int> same_list;//相同的点集合
for(i=0;i<Vers;i++)
{
if(ver[i].V_E==ver[i].V_L)
same_list.push_back(i);
}
if(same_list.size()>1)
for(i=0;i<same_list.size()-1;i++)
{
cout<<"("<<ver[same_list[i]].ver_data<<",";
cout<<ver[same_list[i+1]].ver_data<<")";
if(i!=same_list.size()-2)
cout<<"->";
}
cout<<endl;
return true;
}
};
int main()
{
int i;
adjlist_graph<string, int> a;
a.Auto_build();/*
int u, v;
cin >> u >> v;*/
/*int p;
cin >> p;*/
//cout << a.GetGraphKind() << endl;
vector <string> ans;
ans = a.GetVer();
for (i = 0; i < ans.size() - 1; i++)
cout << ans[i] << " ";
cout << ans[i] << endl;
//cout << endl;
//cout << a.GetVerNum() << endl;
//cout << a.GetEdgeNum() << endl;
a.Print_photo();
cout << endl;
if (a.get_VeAndVl())
{
cout<<endl;
a.get_EandL();
}
else
cout << "fuck you!The input wrong!" << endl;
return 0;
}
标签:课程设计,include,ver,int,AOE,group,next,return,数据结构 来源: https://blog.csdn.net/u014377763/article/details/118604089