【语义分割】——计算IOU
作者:互联网
参考自:https://github.com/dilligencer-zrj/code_zoo/blob/master/compute_mIOU
python版本
直接就是对每个类别进行求解交集和并集
numpy版本
采用numpy的bitcount分布。这里的分布做了一种变换target × nclass + pred
,这样预测正确的像素点都在hist矩阵的对角线上。
import numpy as np
from numpy.lib.twodim_base import diag
size = (20, 30)
classes = 19
pred = np.random.randint(0, classes, size)
target = np.random.randint(0, classes, size)
pred.flatten()
# 计算iou
def IOU(pred, target, nclass):
ious = []
for i in range(classes):
pred_ins = pred == i
target_ins = target == i
inser = pred_ins[target_ins].sum()
union = pred_ins.sum() + target_ins.sum() - inser
iou = inser / union
ious.append(iou)
return ious
# 采用numpy的函数bincount
def IOU2(pred, target, classes):
hist = np.zeros((classes, classes))
hist = np.bincount(pred.flatten() * classes + target.flatten())
hist = np.reshape(hist, (classes, classes))
ious = np.diag(hist) / (hist.sum(0) + hist.sum(1) - np.diag(hist))
return ious
if __name__ == "__main__":
ious = IOU(pred, target, classes)
ious2 = IOU2(pred, target, classes)
print(ious)
print(ious2)
reference
标签:分割,target,pred,IOU,语义,hist,classes,np,ious 来源: https://blog.csdn.net/u011622208/article/details/118526401