其他分享
首页 > 其他分享> > 第1题结果填空(5分) 题目要求:立方尾不变这个题目的结果是一个整数 说明:有些数字的立方的末尾正好是该数字本身。 比如:1,4,5,6,9,24,25,.... 请你计算一下,在10000以内

第1题结果填空(5分) 题目要求:立方尾不变这个题目的结果是一个整数 说明:有些数字的立方的末尾正好是该数字本身。 比如:1,4,5,6,9,24,25,.... 请你计算一下,在10000以内

作者:互联网

第1题结果填空(5分)

题目要求:立方尾不变这个题目的结果是一个整数

说明:有些数字的立方的末尾正好是该数字本身。
比如:1,4,5,6,9,24,25,…

请你计算一下,在10000以内的数字中(指该数字,并非它立方后的数值),符合这个特征的正整数一共有多少个。
请提交该整数,不要填写任何多余的内容。

第2题代码填空(11分)

格子中输出

StringInGrid函数会在一个指定大小的格子中打印指定的字符串。
要求字符串在水平、垂直两个方向上都居中。
如果字符串太长,就截断。
如果不能恰好居中,可以稍稍偏左或者偏上一点。

下面的程序实现这个逻辑,请填写划线部分缺少的代码。

#include <stdio.h>
#include <string.h>

voidStringInGrid(int width, int height, const char* s)
{
inti,k;
charbuf[1000];
strcpy(buf, s);
if(strlen(s)>width-2) buf[width-2]=0;

printf("+");
for(i=0;i<width-2;i++) printf("-");
printf("+\n");

for(k=1; k<(height-1)/2;k++){
	printf("|");
	for(i=0;i<width-2;i++) printf(" ");
	printf("|\n");
}

printf("|");

printf("%*s%s%*s",_____________________________________________);  //填空

printf("|\n");

for(k=(height-1)/2+1; k<height-1; k++){
	printf("|");
	for(i=0;i<width-2;i++) printf(" ");
	printf("|\n");
}	

printf("+");
for(i=0;i<width-2;i++) printf("-");
printf("+\n");	

}

int main()
{
StringInGrid(20,6,“abcd1234”);
return 0;
}

对于题目中数据,应该输出:
±-----------------+
| |
| abcd1234 |
| |
| |
±-----------------+

(如果出现对齐问题,参看下图)

注意:只填写缺少的内容,不要书写任何题面已有代码或说明性文字。

第3题结果填空(17分)

奇妙的数字

小明发现了一个奇妙的数字。它的平方和立方正好把0~9的10个数字每个用且只用了一次。
你能猜出这个数字是多少吗?

请填写该数字,不要填写任何多余的内容。

第4题程序设计(13分)

饮料换购

乐羊羊饮料厂正在举办一次促销优惠活动。乐羊羊C型饮料,凭3个瓶盖可以再换一瓶C型饮料,并且可以一直循环下去(但不允许暂借或赊账)。

请你计算一下,如果小明不浪费瓶盖,尽量地参加活动,那么,对于他初始买入的n瓶饮料,最后他一共能喝到多少瓶饮料。

输入:一个整数n,表示开始购买的饮料数量(0<n<10000)
输出:一个整数,表示实际得到的饮料数

例如:
用户输入:
100
程序应该输出:
149

用户输入:
101
程序应该输出:
151

资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。

提交时,注意选择所期望的编译器类型。

第5题程序设计(25分)

垒骰子

赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。
atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。

不要小看了 atm 的骰子数量哦~

「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。

「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。

「样例输入」
2 1
1 2

「样例输出」
544

「数据范围」
对于 30% 的数据:n <= 5
对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36

资源约定:
峰值内存消耗 < 256M
CPU消耗 < 2000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。

提交时,注意选择所期望的编译器类型。

标签:输出,骰子,题目,数字,整数,饮料,立方
来源: https://blog.csdn.net/zezeaichirou/article/details/118495769