其他分享
首页 > 其他分享> > spring boot @Async异步注解上下文透传

spring boot @Async异步注解上下文透传

作者:互联网

上一篇文章说到,之前使用了@Async注解,子线程无法获取到上下文信息,导致流量无法打到灰度,然后改成 线程池的方式,每次调用异步调用的时候都手动透传 上下文(硬编码)解决了问题。

后面查阅了资料,找到了方案不用每次硬编码,来上下文透传数据了。

方案一:
继承线程池,重写相应的方法,透传上下文。
方案二:(推荐)
线程池ThreadPoolTaskExecutor,有一个TaskDecorator装饰器,实现这个接口,透传上下文。

方案一:继承线程池,重写相应的方法,透传上下文。

1、ThreadPoolTaskExecutor spring封装的线程池

ThreadPoolTaskExecutor 线程池代码如下:

    @Bean(ExecutorConstant.simpleExecutor_3)
    public Executor asyncExecutor3() {
        MyThreadPoolTaskExecutor taskExecutor = new MyThreadPoolTaskExecutor();
        taskExecutor.setCorePoolSize(corePoolSize);
        taskExecutor.setMaxPoolSize(maxPoolSize);
        taskExecutor.setQueueCapacity(queueCapacity);
        taskExecutor.setThreadNamePrefix(threadNamePrefix_3);
        taskExecutor.initialize();
        return taskExecutor;
    }

    //------- 继承父类 重写对应的方法 start
    class MyCallable<T> implements Callable<T> {
        private Callable<T> task;
        private RequestAttributes context;

        public MyCallable(Callable<T> task, RequestAttributes context) {
            this.task = task;
            this.context = context;
        }

        @Override
        public T call() throws Exception {
            if (context != null) {
                RequestContextHolder.setRequestAttributes(context);
            }

            try {
                return task.call();
            } finally {
                RequestContextHolder.resetRequestAttributes();
            }
        }
    }
    class MyThreadPoolTaskExecutor extends ThreadPoolTaskExecutor{

        @Override
        public <T> Future<T> submit(Callable<T> task) {
            return super.submit(new MyCallable(task, RequestContextHolder.currentRequestAttributes()));
        }

        @Override
        public <T> ListenableFuture<T> submitListenable(Callable<T> task) {
            return super.submitListenable(new MyCallable(task, RequestContextHolder.currentRequestAttributes()));
        }
    }
    //------- 继承父类 重写对应的方法 end

1、MyCallable是继承Callable,创建MyCallable对象的时候已经把Attributes对象赋值给属性context了(创建MyCallable对象的时候因为实在当前主线程创建的,所以是能获取到请求的Attributes),在执行call方法前,先执行了RequestContextHolder.setRequestAttributes(context); 【把这个MyCallable对象的属性context 设置到setRequestAttributes中】 所以在执行具体业务时,当前线程(子线程)就能取得主线程的Attributes

2、MyThreadPoolTaskExecutor类是继承了ThreadPoolTaskExecutor 重写了submit和submitListenable方法

为什么是重写submit和submitListenable这两个方法了?

@Async AOP源码的方法位置是在:AsyncExecutionInterceptor.invoke

doSubmit方法能看出来

无返回值调用的是线程池方法:submit()
有返回值,根据不同的返回类型也知道:

  1. 返回值类型是:Future.class 调用的是方法:submit()
  2. 返回值类型是:ListenableFuture.class 调用的方法是:submitListenable(task)
  3. 返回值类型是:CompletableFuture.class调用的是CompletableFuture.supplyAsync这个在异步注解中暂时用不上的,就不考虑重写了。
public Object invoke(final MethodInvocation invocation) throws Throwable {
		Class<?> targetClass = (invocation.getThis() != null ? AopUtils.getTargetClass(invocation.getThis()) : null);
		Method specificMethod = ClassUtils.getMostSpecificMethod(invocation.getMethod(), targetClass);
		final Method userDeclaredMethod = BridgeMethodResolver.findBridgedMethod(specificMethod);

		AsyncTaskExecutor executor = determineAsyncExecutor(userDeclaredMethod);
		if (executor == null) {
			throw new IllegalStateException(
					"No executor specified and no default executor set on AsyncExecutionInterceptor either");
		}

		Callable<Object> task = () -> {
			try {
				Object result = invocation.proceed();
				if (result instanceof Future) {
					return ((Future<?>) result).get();
				}
			}
			catch (ExecutionException ex) {
				handleError(ex.getCause(), userDeclaredMethod, invocation.getArguments());
			}
			catch (Throwable ex) {
				handleError(ex, userDeclaredMethod, invocation.getArguments());
			}
			return null;
		};

		return doSubmit(task, executor, invocation.getMethod().getReturnType());
	}

	@Nullable
	protected Object doSubmit(Callable<Object> task, AsyncTaskExecutor executor, Class<?> returnType) {
		if (CompletableFuture.class.isAssignableFrom(returnType)) {
			return CompletableFuture.supplyAsync(() -> {
				try {
					return task.call();
				}
				catch (Throwable ex) {
					throw new CompletionException(ex);
				}
			}, executor);
		}
		else if (ListenableFuture.class.isAssignableFrom(returnType)) {
			return ((AsyncListenableTaskExecutor) executor).submitListenable(task);
		}
		else if (Future.class.isAssignableFrom(returnType)) {
			return executor.submit(task);
		}
		else {
			executor.submit(task);
			return null;
		}
	}

2、ThreadPoolExecutor 原生线程池

ThreadPoolExecutor线程池代码如下:

//------- ThreadPoolExecutor 继承父类 重写对应的方法 start
    class MyRunnable implements Runnable {
        private Runnable runnable;
        private RequestAttributes context;

        public MyRunnable(Runnable runnable, RequestAttributes context) {
            this.runnable = runnable;
            this.context = context;
        }

        @Override
        public void run() {
            if (context != null) {
                RequestContextHolder.setRequestAttributes(context);
            }
            try {
                runnable.run();
            } finally {
                RequestContextHolder.resetRequestAttributes();
            }
        }
    }

    class MyThreadPoolExecutor extends ThreadPoolExecutor{
        @Override
        public void execute(Runnable command) {
            if(!(command instanceof MyRunnable)){
                command = new MyRunnable(command,RequestContextHolder.currentRequestAttributes())
            }
            super.execute(command);
        }

        public MyThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) {
            super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
        }

        public MyThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory) {
            super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory);
        }

        public MyThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler) {
            super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, handler);
        }

        public MyThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) {
            super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, handler);
        }
    }
    //------- ThreadPoolExecutor 继承父类 重写对应的方法 end

像ThreadPoolExecutor主要重写execute方法,在启动新线程的时候先把Attributes取到放到MyRunnable对象的一个属性中,MyRunnable在具体执行run方法的时候,把属性Attributes赋值到子线程中,当run方法执行完了在把Attributes清空掉。

为什么只要重写了execute方法就可以了?

ThreadPoolExecutor大家都知道主要是由submit和execute方法来执行的。
看ThreadPoolExecutor类的submit具体执行方法是由父类AbstractExecutorService#submit来实现。
具体代码在下面贴出来了,可以看到submit实际上最后调用的还是execute方法,所以我们重写execute方法就好了。

submit方法路径及源码:
java.util.concurrent.AbstractExecutorService#submit(java.lang.Runnable)

    public Future<?> submit(Runnable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<Void> ftask = newTaskFor(task, null);
        execute(ftask);
        return ftask;
    }

    /**
     * @throws RejectedExecutionException {@inheritDoc}
     * @throws NullPointerException       {@inheritDoc}
     */
    public <T> Future<T> submit(Runnable task, T result) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task, result);
        execute(ftask);
        return ftask;
    }

    /**
     * @throws RejectedExecutionException {@inheritDoc}
     * @throws NullPointerException       {@inheritDoc}
     */
    public <T> Future<T> submit(Callable<T> task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task);
        execute(ftask);
        return ftask;
    }

方案二:(推荐)

ThreadPoolTaskExecutor线程池

实现TaskDecorator接口,把实现类设置到taskExecutor.setTaskDecorator(new MyTaskDecorator());

    //------- 实现TaskDecorator 接口 start

    @Bean(ExecutorConstant.simpleExecutor_4)
    public Executor asyncExecutor4() {
        MyThreadPoolTaskExecutor taskExecutor = new MyThreadPoolTaskExecutor();
        taskExecutor.setCorePoolSize(corePoolSize);
        taskExecutor.setMaxPoolSize(maxPoolSize);
        taskExecutor.setQueueCapacity(queueCapacity);
        taskExecutor.setThreadNamePrefix(threadNamePrefix_4);
        taskExecutor.setTaskDecorator(new MyTaskDecorator());
        taskExecutor.initialize();
        return taskExecutor;
    }

    class MyTaskDecorator implements TaskDecorator{

        @Override
        public Runnable decorate(Runnable runnable) {
            try {
                RequestAttributes attributes = RequestContextHolder.getRequestAttributes();
                return () -> {
                    try {
                        RequestContextHolder.setRequestAttributes(attributes);
                        runnable.run();
                    } finally {
                        RequestContextHolder.resetRequestAttributes();
                    }
                };
            } catch (IllegalStateException e) {
                return runnable;
            }
        }
    }
    //------- 实现TaskDecorator 接口 end

为什么设置了setTaskDecorator就能实现透传数据了?

主要还是看taskExecutor.initialize()方法,主要是重写了ThreadPoolExecutor的execute方法,用装饰器模式 增强了Runnable接口,源代码如下:

	@Nullable
	private ThreadPoolExecutor threadPoolExecutor;

	//初始化方法
	public void initialize() {
		if (logger.isDebugEnabled()) {
			logger.debug("Initializing ExecutorService" + (this.beanName != null ? " '" + this.beanName + "'" : ""));
		}
		if (!this.threadNamePrefixSet && this.beanName != null) {
			setThreadNamePrefix(this.beanName + "-");
		}
		this.executor = initializeExecutor(this.threadFactory, this.rejectedExecutionHandler);
	}

	@Override
	protected ExecutorService initializeExecutor(
			ThreadFactory threadFactory, RejectedExecutionHandler rejectedExecutionHandler) {

		BlockingQueue<Runnable> queue = createQueue(this.queueCapacity);

		ThreadPoolExecutor executor;

		//判断是否设置了,taskDecorator装饰器
		if (this.taskDecorator != null) {
			executor = new ThreadPoolExecutor(
					this.corePoolSize, this.maxPoolSize, this.keepAliveSeconds, TimeUnit.SECONDS,
					queue, threadFactory, rejectedExecutionHandler) {
				@Override
				public void execute(Runnable command) {
					//执行装饰器方法包装Runnable接口
					Runnable decorated = taskDecorator.decorate(command);
					if (decorated != command) {
						decoratedTaskMap.put(decorated, command);
					}
					super.execute(decorated);
				}
			};
		}
		else {
			executor = new ThreadPoolExecutor(
					this.corePoolSize, this.maxPoolSize, this.keepAliveSeconds, TimeUnit.SECONDS,
					queue, threadFactory, rejectedExecutionHandler);

		}

		if (this.allowCoreThreadTimeOut) {
			executor.allowCoreThreadTimeOut(true);
		}
		//把初始化好的ThreadPoolExecutor线程池赋值给 当前类属性threadPoolExecutor
		this.threadPoolExecutor = executor;
		return executor;
	}

总结

无论是方案1还是方案2,原理都是先在当前线程获取到Attributes,然后把Attributes赋值到Runnable的一个属性中,在起一个子线程后,具体执行run方法的时候,把Attributes设置给当子线程,当run方法执行完了,在清空Attributes。

方案2实现比较优雅,所以推荐使用它。

工作没多久的时候觉得spring的使用很麻烦,但是工作久了慢慢发现spring一些小细节、设计模式运用的非常巧妙,很容易解决遇到的问题,只能说spring

标签:task,return,spring,boot,submit,透传,线程,taskExecutor,public
来源: https://www.cnblogs.com/x-kq/p/14911497.html