标签:讲座 Hedging ObjF Blanka 4th under Program data market
讲座背景
- The 4th Women in Quantitative Finance Conference (WQF)
- 2021-06-14 Deep Hedging under Rough Volatility by Blanka Horvath Lecturer, King’s College London and Researcher, The Alan Turing Institute
- 这个一小时的讲座主要基于Generating Financial Markets with Signatures,已于2021.06.09在Risk杂志刊登 (pdf文档可以在这里下载)。这个讲座主要基于这篇文章,自己在2021.06.13的博文中也把这篇文章列入to read list。
讲座摘要
- Classical QF vs Deep Model Architectures
- Classical: (Program or Algo; Data) => output
-
- e.g. SABR model in pricing library, match the algorithms with the data in the market
- Now: Model = (Architecture, ObjF; TrainData) => Program, (Program, TestData) => output
-
- e.g. Machine learning architecture, choose objective function (more art than science, need to under the problem to design suitable ObjF), TrainData (data-driven aspect, important for the performance of the algorithms afterwards, motivation for data generator) .
-
- Architecture, ObjF combined as Network;
-
- Quality of training data shapes the DNN (and its performance)!
-
- What kind of training data we should use, what is the training data that will prepare our algorithms ideally for the scenarios that they will be facing in real?
-
- Test data is real life data that algorithm will face in the market.
- What are the challenges that we use the historical data as test data?
- Historical data is one realisation of the past, just represents one out of many many realisations.
- Unless make some extreme assumptions: e.g., market is stationary which is not the case most of times; We observe the evolution in the past does not mean that it works like this in the future.
- 个人认为这也是么trainset, forward testing重要以及model risk需要评估的原因。
标签:讲座,Hedging,ObjF,Blanka,4th,under,Program,data,market
来源: https://blog.csdn.net/goldenRainTree/article/details/118044102
本站声明:
1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。