其他分享
首页 > 其他分享> > loss函数之L1Loss与MSELoss

loss函数之L1Loss与MSELoss

作者:互联网

L1Loss

平均绝对误差(MAE),用于回归模型

对于包含 N N N个样本的batch数据 D ( x , y ) D(x, y) D(x,y), l o s s loss loss计算如下:

l o s s = 1 N ∑ n = 1 N l n loss=\frac{1}{N} \sum_{n=1}^{N} l_{n} loss=N1​∑n=1N​ln​

其中, l n = ∣ x n − y n ∣ l_{n}=\left|x_{n}-y_{n}\right| ln​=∣xn​−yn​∣

class L1Loss(_Loss):
    __constants__ = ['reduction']
    def __init__(self, size_average=None, reduce=None, reduction='mean'):
        super(L1Loss, self).__init__(size_average, reduce, reduction)
    def forward(self, input, target):
        return F.l1_loss(input, target, reduction=self.reduction)

pytorch中通过torch.nn.L1Loss类实现,也可以直接调用F.l1_loss 函数,代码中的size_averagereduce已经弃用。reduction有三种取值mean, sum, none,对应不同的返回 ℓ ( x , y ) \ell(x, y) ℓ(x,y). 默认为mean

L = { l 1 , … , l N } L=\left\{l_{1}, \ldots, l_{N}\right\} L={l1​,…,lN​}

ℓ ( x , y ) = { L ⁡ ,  if reduction  =  ’none’  mean ⁡ ( L ) ,  if reduction  =  ’mean’  sum ⁡ ( L ) ,  if reduction  =  ’sum’  \ell(x, y)=\left\{\begin{array}{ll}\operatorname L, & \text { if reduction }=\text { 'none' } \\ \operatorname{mean}(L), & \text { if reduction }=\text { 'mean' } \\ \operatorname{sum}(L), & \text { if reduction }=\text { 'sum' }\end{array} \right. ℓ(x,y)=⎩⎨⎧​L,mean(L),sum(L),​ if reduction = ’none’  if reduction = ’mean’  if reduction = ’sum’ ​

其中,当reduction取值mean时,对应于上述 l o s s loss loss的计算

MSELoss

均方误差(MSE),用于回归模型

对于包含 N N N个样本的batch数据 D ( x , y ) D(x, y) D(x,y), l o s s loss loss计算如下:

l o s s = 1 N ∑ n = 1 N l n loss=\frac{1}{N} \sum_{n=1}^{N} l_{n} loss=N1​∑n=1N​ln​

其中, l n = ( x n − y n ) 2 l_{n}=\left(x_{n}-y_{n}\right)^{2} ln​=(xn​−yn​)2

class MSELoss(_Loss):
    def __init__(self, size_average=None, reduce=None, reduction='mean'):
        super(MSELoss, self).__init__(size_average, reduce, reduction)
    def forward(self, input, target):
        return F.mse_loss(input, target, reduction=self.reduction)

pytorch中通过torch.nn.MSELoss类实现,也可以直接调用F.mse_loss 函数。代码中的size_averagereduce已经弃用。reduction有三种取值mean, sum, none,对应不同的返回 ℓ ( x , y ) \ell(x, y) ℓ(x,y). 默认为mean

L = { l 1 , … , l N } L=\left\{l_{1}, \ldots, l_{N}\right\} L={l1​,…,lN​}

ℓ ( x , y ) = { L ⁡ ,  if reduction  =  ’none’  mean ⁡ ( L ) ,  if reduction  =  ’mean’  sum ⁡ ( L ) ,  if reduction  =  ’sum’  \ell(x, y)=\left\{\begin{array}{ll}\operatorname L, & \text { if reduction }=\text { 'none' } \\ \operatorname{mean}(L), & \text { if reduction }=\text { 'mean' } \\ \operatorname{sum}(L), & \text { if reduction }=\text { 'sum' }\end{array} \right. ℓ(x,y)=⎩⎨⎧​L,mean(L),sum(L),​ if reduction = ’none’  if reduction = ’mean’  if reduction = ’sum’ ​

其中,当reduction取值mean时,对应于上述 l o s s loss loss的计算

标签:__,loss,MSELoss,L1Loss,text,sum,reduction,mean
来源: https://blog.csdn.net/ltochange/article/details/117914416