统计学常识笔记整理(二)
作者:互联网
数据类型
按照计量尺度不同,统计数据分为:分类数据、顺序数据、数值型数据。
分类数据只能归于某一类别的非数值型数据
异众比率
异众比率主要适合测度分类数据的离散程度,当然,对于顺序的数据以及数值型数据也可以计算异众比率。它虽然也是一个反映离散程度的相对指标,但是与标准差系数不同。
异众比率主要用于衡量众数对一组数据的代表程度。异众比率越大,说明非众数组的频数占总频数的比重越大,众数的代表性就越差;异众比率越小,说明非众数组的频数占总频数的比重越小,众数的代表性越好。
其中, 表示异众比率, 表示众数次数,N表示总体单位总数(即总体次数)。
变异系数
变异系数是衡量资料中各观测值变异程度的另一个统计量。当进行两个或多个资料变异程度的比较时,如果度量单位与平均数相同,可以直接利用标准差来比较。如果单位和(或)平均数不同时,比较其变异程度就不能采用标准差,而需采用标准差与平均数的比值(相对值)来比较。标准差与平均数的比值称为变异系数,记为C·V。变异系数可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响。
变异系数的计算公式为:变异系数 C·V =( 标准偏差 SD / 平均值Mean )× 100%
在进行数据统计分析时,如果变异系数大于15%,则要考虑该数据可能不正常,应该剔除。
注意,变异系数的大小,同时受平均数和标准差两个统计量的影响,因而在利用变异系数表示资料的变异程度时,最好将平均数和标准差也列出。
优点
比起标准差来,变异系数的好处是不需要参照数据的平均值。变异系数是一个无量纲量,因此在比较两组量纲不同或均值不同的数据时,应该用变异系数而不是标准差来作为比较的参考。
缺陷
当平均值接近于0的时候,微小的扰动也会对变异系数产生巨大影响,因此造成精确度不足。
变异系数无法发展出类似于均值的置信区间的工具。
标签:平均数,常识,笔记,统计学,异众,标准差,比率,变异系数,数据 来源: https://blog.51cto.com/u_15264819/2887635