其他分享
首页 > 其他分享> > Machine Learning - Day2 -ML Intro_1

Machine Learning - Day2 -ML Intro_1

作者:互联网

文章目录

Edible Instruction

  1. Too many formulations and equations, so screen shots of PPT is necessary.
  2. My mathematics sucks, so you 'll see many mathematical knowledge interspersed in my all ML learning session.
  3. Don’t be afraid of any mathematical symbol, just BAIDU the definition.

What’s Machine Learning?

Machine Learning = Looking for function

What’s the function in math?
In mathematics, a function is a binary relation between two sets that associates to each element of the first set exactly one element of the second set.
在这里插入图片描述

The reality of scene:

在这里插入图片描述

Different Types Of Functions

Regression

Regression : The function outputs a scalar

在这里插入图片描述

Classification

Classification: Given options(classes), the function outputs the correct one.

在这里插入图片描述
So Alpha Go is a classification function, 19X19 classes to output a position
在这里插入图片描述

Structured Learning

Structured Learning: Create something with structure( image, doctument, video)
Ask machine to create the things.

Example application

Reminder: the function of sample is a conjecture

Estimating the views of Youtube channel tomorrow, base on the history of views

在这里插入图片描述

  1. Function with unknown parameters
    在这里插入图片描述

  2. Define Loss from Training Data (Important!!!)

Loss is a function of parameters L(b,w), and comes from the Training DATA.
Loss: how good a set of values is.
So, if Loss value is large, the parameters are bad.

Suppose L(0.5k, 1)
在这里插入图片描述

Label : The true value is label!!!

在这里插入图片描述

∑ \sum ∑ : Sum things up (called Sigma)
Refer to Article


在这里插入图片描述

Sum all e n e_n en​ up

在这里插入图片描述
Choose MAE to calculate on the PPT, and MSE on the homework
在这里插入图片描述

probability distribution (概率分布)
Cross entropy (交叉熵)

在这里插入图片描述
The graph of true data
在这里插入图片描述
3. Optimization
在这里插入图片描述

arg min f(x) : the value of x when f(x) have the minimum value. arg =
argument, arg min: the argument of the minimum of target function

Gradient Descent:

What’s Gradient Descent?
Please refer to Article and Video

Postulate we only have one unknown parameter
在这里插入图片描述

Pick an initial value W 0 W^0 W0 (Blind guess here)

Differential coefficient(微分), please refer to 知乎acticle
and Differential Equations Solution Guide

在这里插入图片描述

Learning rate : η \eta η

在这里插入图片描述

Update

标签:function,Loss,What,ML,value,Machine,Intro,Learning
来源: https://blog.csdn.net/landian0531/article/details/117522559