其他分享
首页 > 其他分享> > 一文解决scrapy带案例爬取当当图书

一文解决scrapy带案例爬取当当图书

作者:互联网

Scrapy框架

简介

Scrapy的五大组件

Spiders(爬虫):

它负责处理所有Responses,从中分析提取数据,获取Item字段需要的数据,并将需要跟进的URL提交给引擎,再次进入Scheduler(调度器)

Engine(引擎):

负责Spider、ItemPipeline、Downloader、Scheduler中间的通讯,信号、数据传递等。

Scheduler(调度器):

它负责接受引擎发送过来的Request请求,并按照一定的方式进行整理排列,入队,当引擎需要时,交还给引擎。

Downloader(下载器):

负责下载Scrapy Engine(引擎)发送的所有Requests请求,并将其获取到的Responses交还Scrapy Engine(引擎),由引擎交给Spider来处理

ItemPipeline(管道):

它负责处理Spider中获取到的Item,并进行进行后期处理(详细分析、过滤、存储等)的地方.

Downloader Middlewares(下载中间件):

你可以当作是一个可以自定义扩展下载功能的组件。

Spider Middlewares(Spider中间件):

你可以理解为是一个可以自定扩展和操作引擎和Spider中间

通信的功能组件(比如进入Spider的Responses;和从Spider出去的Requests)
scrapy的数据流图:

绿线是数据流
在这里插入图片描述

在这里插入图片描述

安装:

   pip install scrapy

scrapy几条命令

创建项目:scrapy startproject xxx
进入项目:cd xxx
基本爬虫:scrapy genspider xxx(爬虫名) xxx.com (爬取域)
还有一条是规则爬虫的命令,只是这条有变化,前俩条不变
规则爬虫:scrapy genspider -t crawl xxx(爬虫名) xxx.com (爬取域)
运行命令:scrapy crawl xxx

建立项目

(1).建立一个文件夹 scrapyDemo1
(2).在该文件夹下面打开命令行窗口 scrapy startproject demo1 则会在文件夹scrapyDemo1下面建立scrapy项目文件夹demo1,包括scrapy的各个组件子文件
在这里插入图片描述

(3).进入到项目文件夹demo1下 cd demo1
(4).scrapy genspider 爬虫名 域名 e.g:scrapy genspider demo1spider baidu.com
(5).scrapy crawl 爬虫名 用于运行爬虫 一般该命令在命令行使用 而且输出许多信息 很不方便 所以专门写个run.py来执行程序且内容几乎固定,和scrapy.cfg同级

run.py

from scrapy import cmdline
cmdline.execute('scrapy crawl demo1spider --nolog'.split())#--nolog   控制台不输出日志
   e.g:scrapy crawl demo1spider

在这里插入图片描述

执行三四之后相当于建立一个爬虫项目,并启动这个项目,一般在第三步骤之后就要进行相应的代码编写和配置更改
在这里插入图片描述

scrapy框架文件的简单配置使用介绍

setting.py 进行全局配置

项目名 User-Agent 机器人规则 并发数 延迟 cookies 默认请求头 项目管道优先级配置

主要注意注释介绍,几个常用的

# Scrapy settings for demo1 project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     https://docs.scrapy.org/en/latest/topics/settings.html
#     https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#     https://docs.scrapy.org/en/latest/topics/spider-middleware.html

BOT_NAME = 'demo1'  #项目名

SPIDER_MODULES = ['demo1.spiders']    #
NEWSPIDER_MODULE = 'demo1.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'demo1 (+http://www.yourdomain.com)'    #这个可以浏览器抓包查看值 比较重要 一般都要带的

# Obey robots.txt rules
ROBOTSTXT_OBEY = False   # 机器人规则 默认是true  一般都要修改为false  否则几乎爬不了太多东西

# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32  #最大并发数 可以开启的爬虫线程数

# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 1   #下载延迟时间,单位是秒,默认是3秒,即爬一个停3秒,设置为1秒性价比较高,如果要爬取的文件较多,写零点几秒也行
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)
#COOKIES_ENABLED = False   #是否保存COOKIES,默认关闭,开机可以记录爬取过程中的COKIE,非常好用的一个参数

# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False

# Override the default request headers:
#DEFAULT_REQUEST_HEADERS = {
#   'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#   'Accept-Language': 'en',
#}     #默认请求头,上面写了一个USER_AGENT,其实这个东西就是放在请求头里面的,这个东西可以根据你爬取的内容做相应设置。

# Enable or disable spider middlewares
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#    'demo1.middlewares.Demo1SpiderMiddleware': 543,
#}

# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
#    'demo1.middlewares.Demo1DownloaderMiddleware': 543,
#}

# Enable or disable extensions
# See https://docs.scrapy.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#    'scrapy.extensions.telnet.TelnetConsole': None,
#}

# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
#ITEM_PIPELINES = {
    #'demo1.pipelines.Demo1Pipeline': 300,
    #'demo1.pipelines.Demo1MySqlPipeline' : 200,
#}  #项目管道,300为优先级,越低爬取的优先度越高 pipelines.py里面写了两个管道,一个爬取网页的管道,一个存数据库的管道,我调整了他们的优先级,如果有爬虫数据,优先执行存库操作。



# Enable and configure the AutoThrottle extension (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

日志配置
相关变量
LOG_LEVEL= ""

LOG_FILE="日志名.log"

在运行时后面加上–nolog,控制台就不会输出日志信息了:

scrapy crawl demo1spider --nolog
日志等级

1.DEBUG 调试信息

2.INFO 一般信息

3.WARNING 警告

4.ERROR 普通错误

5.CRITICAL 严重错误

如果设置:
LOG_LEVEL="WARNING",就只会WARNING等级之下的ERRORCRITICAL
默认等级是1

导出为几种格式

执行爬虫文件时添加-o选项即可

json格式,默认为Unicode编码

scrapy crawl 项目名 -o 项目名.json

json lines格式,默认为Unicode编码

scrapy crawl 项目名 -o 项目名.jsonlines

csv 逗号表达式,可用Excel打开

scrapy crawl 项目名 -o 项目名.csv

xml格式

scrapy crawl 项目名 -o 项目名.xml

对于json文件,在setting.js文件里添加,设置编码格式,否则会乱码:

FEED_EXPORT_ENCODING='utf-8'

xpath

选择查找类

1.from scrapy.selector import Selector:引入选择查找类
2.selector = Selector(text=htmlText):装载Html文档 形成Selector对象 可以使用Xpath方法
3.Xpath可以连续调用 返回的是selector列表 则这个列表可以连续调用Xpath

Xpath查找Html元素

1.“//”表示文档下面所有节点元素,“/”表示当前节点的下一级节点元素,“.”表示当前节点元素
2.如果Xpath返回Selector对象,调用extract()函数会得到这些对象元素文本的列表,extract_first()获取列表中的第一个元素,如果列表为空,返回None,对于单一的Selector对象没有extract_first()函数
3.“/@attrName”得到一个Selector元素的attrName属性节点对象,也是一个Selector对象
4.“/text()”得到一个Selector元素包含的文本值,文本值节点对象也是一个Selector对象,通过extract()函数获取文本值
5.“tag[condition1 and condition2...]”来限定一个tag元素,condition是这个tag的属性
6.Xpath可以使用position()来确定其中一个元素的限制,选择序号从1开始

s = selector.xpath("//book[position()=1]/title").extract_first()

7.“*”代表任何元素节点,不包括text和comment
8.“@*”代表任何属性
9.“element/parent::*”选择element的父节点,该节点只有一个
10.“element/following-sibling::*”搜索element后面同级的所有兄弟节点,“element/following-sibling::[position()=1]”搜索element后面的同级的第一个兄弟节点
11.“element/preceding-sibling::*”搜索element前面同级的所有兄弟节点

yield函数

1.yield类似于return,但它是生成器的一部分

生成器详解
首先,如果你还没有对yield有个初步分认识,那么你先把yield看做“return”,这个是直观的,它首先是个return,普通的return是什么意思,就是在程序中返回某个值,返回之后程序就不再往下运行了。看做return之后再把它看做一个是生成器(generator)的一部分(带yield的函数才是真正的迭代器)

2.yield与return

带yield的函数是一个生成器,而不是一个函数了,这个生成器有一个函数就是next函数,next就相当于“下一步”生成哪个数,这一次的next开始的地方是接着上一次的next停止的地方执行的,所以调用next的时候,生成器并不会从foo函数的开始执行,只是接着上一步停止的地方开始,然后遇到yield后,return出要生成的数,此步就结束。

实例

爬取当当网站图书数据并保存到mysql中
基础就在demo1上进行

观查网页

当当图书网:http://search.dangdang.com
输入python,网址变化成:http://search.dangdang.com/?key=python&act=input
翻到下一页或者第二页:http://search.dangdang.com/?key=python&act=input&page_index=2
在这里插入图片描述
在这里插入图片描述

确定爬取的信息:

title 标题
author 作者
date 发布日期
publisher 出版社
detail 细节介绍
price 价格

在这里插入图片描述
在这里插入图片描述

mysql中建立相应数据库和表:

show databases ;


create database ddbookdb;



use ddbookdb;

create table books(
    btitle varchar(512) primary key ,
    bauthor varchar(256),
    bpublisher varchar(256),
    bdate varchar(32),
    bprice varchar(16),
    bdetail text
);
select * from books;

编写运行run.py文件:

from scrapy import cmdline
cmdline.execute('scrapy crawl demo1spider --nolog'.split())#--nolog   控制台不输出日志

编写items.py数据项目类Demo1Item:

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html

import scrapy

class Demo1Item(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    title = scrapy.Field()#标题
    author = scrapy.Field()#作者
    date = scrapy.Field()#发布日期
    publisher = scrapy.Field()#出版社
    detail = scrapy.Field()#细节介绍
    price = scrapy.Field()#价格
    #pass

编写pipelines.py文件,写连接和关闭mysql数据库的两个函数,将数据项传输过来的数据输出到控制台并存入到mysql数据库中,使用count变量统计爬取的书籍数量:

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html


# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
import pymysql

class Demo1Pipeline:
    def open_spider(self,spider):
        print("opened")

        try:
            self.con =pymysql.connect(host="127.0.0.1", port=3306, user="root", passwd="lzyft1030", db="ddbookdb", charset="utf8")
            self.cursor = self.con.cursor(pymysql.cursors.DictCursor)#创建游标
            self.cursor.execute("delete from books")
            self.opend = True
            self.count = 0
        except Exception as err:
            print(err)
            self.opend = False

    def close_spider(self,spider):
        if self.opend:
            self.con.commit()#提交
            self.con.close()#关闭
            self.opend = False
        print("closed")
        print("总共爬取",self.count,"本书籍")

    def process_item(self, item, spider):
        #查看传输过来的数据
        try:
            #把数据存入到mysql中
            if self.opend:
                self.cursor.execute("insert into books(btitle, bauthor, bpublisher, bdate, bprice, bdetail) values(%s, %s, %s ,%s ,%s, %s)", \
                            (item["title"], item["author"], item["publisher"], item["date"], item["price"], item["detail"]))
                #计算书籍数量
                self.count+= 1
        except Exception as err:
            print(err)

        return item


修改setting.py文件【修改机器人规则, 加入User-Agent, 打开 ITEM_PIPELINES 将数据传输过来送到 demo1Pipeline 类中然后存到mysql中】:

# Scrapy settings for demo1 project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     https://docs.scrapy.org/en/latest/topics/settings.html
#     https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#     https://docs.scrapy.org/en/latest/topics/spider-middleware.html

BOT_NAME = 'demo1'  #项目名

SPIDER_MODULES = ['demo1.spiders']    #
NEWSPIDER_MODULE = 'demo1.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'demo1 (+http://www.yourdomain.com)'    #这个可以浏览器抓包查看值 比较重要 一般都要带的

# Obey robots.txt rules
ROBOTSTXT_OBEY = False   # 机器人规则 默认是true  一般都要修改为false  否则几乎爬不了太多东西

# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32  #最大并发数 可以开启的爬虫线程数

# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
DOWNLOAD_DELAY = 1   #下载延迟时间,单位是秒,默认是3秒,即爬一个停3秒,设置为1秒性价比较高,如果要爬取的文件较多,写零点几秒也行
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)
#COOKIES_ENABLED = False   #是否保存COOKIES,默认关闭,开机可以记录爬取过程中的COKIE,非常好用的一个参数

# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False

# Override the default request headers:
#DEFAULT_REQUEST_HEADERS = {
#   'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#   'Accept-Language': 'en',
#}     #默认请求头,上面写了一个USER_AGENT,其实这个东西就是放在请求头里面的,这个东西可以根据你爬取的内容做相应设置。

# Enable or disable spider middlewares
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#    'demo1.middlewares.Demo1SpiderMiddleware': 543,
#}

# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
#    'demo1.middlewares.Demo1DownloaderMiddleware': 543,
#}

# Enable or disable extensions
# See https://docs.scrapy.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#    'scrapy.extensions.telnet.TelnetConsole': None,
#}

# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
    'demo1.pipelines.Demo1Pipeline': 300,
    #'demo1.pipelines.Demo1MySqlPipeline' : 200,
}  #项目管道,300为优先级,越低爬取的优先度越高 pipelines.py里面写了两个管道,一个爬取网页的管道,一个存数据库的管道,我调整了他们的优先级,如果有爬虫数据,优先执行存库操作。



# Enable and configure the AutoThrottle extension (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

修改demo1spider.py文件,进行具体的爬虫操作:

import scrapy
from bs4 import UnicodeDammit
from bs4 import BeautifulSoup
from ..items import Demo1Item


#重写start_requests方法

class Demo1spiderSpider(scrapy.Spider):
    name = 'demo1spider'
    #allowed_domains = ['baidu.com']
    #start_urls = ['http://baidu.com/']  #入口地址
    key = "python"
    source_url = "http://search.dangdang.com/"

    def start_requests(self):#入口函数  可以用入口地址代替 入口地址可以有多个 是个列表
        url = Demo1spiderSpider.source_url+"?key=" + Demo1spiderSpider.key
        yield scrapy.Request(url=url, callback=self.parse)

    def parse(self, response):#回调函数
        #一般网址response返回的是二进制  可以response.body.decode()转为文本
        try:
            #采用bs4里面的方法来处理编码问题
            dammit = UnicodeDammit(response.body, ['utf-8','gbk'])
            data = dammit.unicode_markup
            #建立选择查找类Selector对象 调用xpath方法
            selector = scrapy.Selector(text=data)
            lis = selector.xpath("//li['@ddt-pit'][starts-with(@class,'line')]")
            #print(lis)
            for li in lis:
                title = li.xpath("./a[position()=1]/@title").extract_first()
                price = li.xpath("./p[@class='price']/span[@class='search_now_price']/text()").extract_first()
                author = li.xpath("./p[@class='search_book_author']/span/a/@title").extract_first()
                date = li.xpath("./p[@class='search_book_author']/span[position()=2]/text()").extract_first()
                publisher = li.xpath("./p[@class='search_book_author']/span[position()=3]/a/@title").extract_first()
                detail = li.xpath("./p[@class='detail']/text()").extract_first()#有时为空 None

                item = Demo1Item()
                item['title'] = title.strip() if title else ""
                item['author'] = author.strip() if author else ""
                item['date'] = date.strip()[1:] if date else ""
                item['publisher'] = publisher.strip() if publisher else ""
                item['price'] = price.strip() if price else ""
                item['detail'] = detail.strip() if detail else ""
                yield item

            #最后一页时link为none
            link = selector.xpath("//div[@class='paging']/ul[@name='Fy']/li[@class='next']/a/@href").extract_first()
            if link:
                url = response.urljoin(link)
                yield scrapy.Request(url=url, callback=self.parse)
        except Exception as err:
            print(err)

如果导入 from …items import Demo1Item 不合适 可以按一下操作
把项目的根目录设置为源路径:选中项目根目录,该项目根目录是第一个demo1,按图操作 语句写成上面的格式就欧克了

在这里插入图片描述

标签:en,当当,docs,demo1,爬取,item,scrapy,html
来源: https://blog.csdn.net/qq_43636709/article/details/117449381