其他分享
首页 > 其他分享> > Lenet神经网络实现

Lenet神经网络实现

作者:互联网

手写字体识别模型LeNet5诞生于1994年,是最早的卷积神经网络之一。LeNet5通过巧妙的设计,利用卷积、参数共享、池化等操作提取特征,避免了大量的计算成本,最后再使用全连接神经网络进行分类识别,这个网络也是最近大量神经网络架构的起点。虽然现在看来Lenet基本实际用处不大,而且架构现在基本也没人用了,但是可以作为神经网络架构的一个很好的入门基础。

Lenet神经网络架构图如下:

LeNet5由7层CNN(不包含输入层)组成,上图中输入的原始图像大小是32×32像素。下面分别介绍每一层的含义。

 

 下面是基于Keras的简单代码实现

import keras
import numpy as np
from keras import optimizers
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D
from keras.callbacks import LearningRateScheduler, TensorBoard
from keras.preprocessing.image import ImageDataGenerator
from keras.regularizers import l2

batch_size    = 128
epochs        = 200
iterations    = 391
num_classes   = 10
weight_decay  = 0.0001
mean          = [125.307, 122.95, 113.865]
std           = [62.9932, 62.0887, 66.7048]

def build_model():
    model = Sequential()
    model.add(Conv2D(6, (5, 5), padding='valid', activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay), input_shape=(32,32,3)))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))
    model.add(Conv2D(16, (5, 5), padding='valid', activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay)))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))
    model.add(Flatten())
    model.add(Dense(120, activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay) ))
    model.add(Dense(84, activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay) ))
    model.add(Dense(10, activation = 'softmax', kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay) ))
    sgd = optimizers.SGD(lr=.1, momentum=0.9, nesterov=True)
    model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
    return model

def scheduler(epoch):
    if epoch < 100:
        return 0.01
    if epoch < 150:
        return 0.005
    return 0.001

if __name__ == '__main__':

    # load data
    (x_train, y_train), (x_test, y_test) = cifar10.load_data()
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    
    # data preprocessing  [raw - mean / std]
    for i in range(3):
        x_train[:,:,:,i] = (x_train[:,:,:,i] - mean[i]) / std[i]
        x_test[:,:,:,i] = (x_test[:,:,:,i] - mean[i]) / std[i]

    # build network
    model = build_model()
    print(model.summary())

    # set callback
    tb_cb = TensorBoard(log_dir='./lenet_dp_da_wd', histogram_freq=0)
    change_lr = LearningRateScheduler(scheduler)
    cbks = [change_lr,tb_cb]

    # using real-time data augmentation
    print('Using real-time data augmentation.')
    datagen = ImageDataGenerator(horizontal_flip=True,
            width_shift_range=0.125,height_shift_range=0.125,fill_mode='constant',cval=0.)

    datagen.fit(x_train)

    # start train 
    model.fit_generator(datagen.flow(x_train, y_train,batch_size=batch_size),
                        steps_per_epoch=iterations,
                        epochs=epochs,
                        callbacks=cbks,
                        validation_data=(x_test, y_test))
    # save model
    model.save('lenet_dp_da_wd.h5')

 

标签:kernel,keras,实现,神经网络,train,Lenet,test,import,model
来源: https://blog.51cto.com/u_15242250/2842419