spark调优篇-spark on Yarn 内存管理总结
作者:互联网
本文旨在解析 spark on Yarn 的内存管理,使得 spark 调优思路更加清晰
内存相关参数
spark 是基于内存的计算,spark 调优大部分是针对内存的,了解 spark 内存参数有也助于我们理解 spark 内存管理
- spark.driver.memory:默认 512M
- spark.executor.memory:默认 512M
- spark.yarn.am.memory:默认 512M
- spark.yarn.driver.memoryOverhead:driver memory * 0.10, with minimum of 384
- spark.yarn.executor.memoryOverhead:executor memory * 0.10, with minimum of 384
- spark.yarn.am.memoryOverhead:am memory * 0.10, with minimum of 384
- executor-cores:executor 相当于一个进程,cores 相当于该进程里的线程
内存解析
spark.xxx.memory / --xxx-memory 是 JVM 堆区域,但是 JVM 本身也会占用一定的堆空间,这部分由 spark.yarn.xxx.memoryOverhead 确定,二者关系如下图
内存分配
为了更好的利用 spark 内存,通常我们需要在 Yarn 集群中设置如下参数 【非必须】
<property> <name>yarn.nodemanager.resource.memory-mb</name> <value>106496</value> <!-- 104G --> </property> <property> <name>yarn.scheduler.minimum-allocation-mb</name> <value>2048</value> </property> <property> <name>yarn.scheduler.maximum-allocation-mb</name> <value>106496</value> </property> <property> <name>yarn.app.mapreduce.am.resource.mb</name> <value>2048</value> </property>
- yarn.app.mapreduce.am.resource.mb:am 能申请的最大内存
- yarn.nodemanager.resource.memory-mb:nodemanager 能申请的最大内存
- yarn.scheduler.minimum-allocation-mb:任务调度时一个 container 可申请的最小内存
- yarn.scheduler.maximum-allocation-mb:任务调度时一个 container 可申请的最大内存
yarn.scheduler.minimum-allocation-mb 是 Container 的内存基本单位,也就是说 Container 的内存必须是 yarn.scheduler.minimum-allocation-mb 的整数倍,
比如 yarn.scheduler.minimum-allocation-mb 设置为 2G,2048M,
如果内存申请为 512M,512+384<2048M,会被分配 2G 内存,
如果内存申请为 3G,3072+384=3456M<4096M,会被分配 4G 内存,
如果申请内存为 6G,6144+614=6758<8192M,会被分配 8G 内存, 【max(6144*0.1, 384)=614】
所以当设定 --executor-memory 为 3G 时,Container 实际内存并非 3G
常见问题
常见的问题无非就是 内存不足 或者 container 被杀死
- Removing executor 5 with no recent heartbeats: 120504 ms exceeds timeout 120000 ms
- Container killed by YARN for exceeding memory limits
- Consider boosting spark.yarn.executor.memoryOverhead
- spark-OutOfMemory:GC overhead limit exceeded
常规思路
1. 第一解决办法就是增加总内存 【此法不能解决所有问题】
2. 其次考虑数据倾斜问题,因为数据倾斜导致某个 task 内存不足,其它 task 内存足够
// 最简单的方法是 repartition 【此法不能解决所有问题】
3. 考虑增加每个 task 的可用内存
// 减少 Executor 数
// 减少 executor-cores 数
参数设置注意事项
executor-memory
设置过大,会导致 GC 过程很长,64G 是推荐的 内存上限 【根据硬件不同,可寻找合适的上限】
executor-cores
1. 设置过大,并行度会很高,容易导致 网络带宽占满,特别是从 HDFS 读取数据,或者是 collect 数据回传 Driver
2. 设置过大,使得多个 core 之间争夺 GC 时间已经资源,导致大部分时间花在 GC 上
参考资料:
https://www.cnblogs.com/saratearing/p/5813403.html#top
https://blog.csdn.net/pearl8899/article/details/80368018
https://www.so.com/s?q=with+minimum+of+384&src=se_zoned
https://blog.cloudera.com/how-to-tune-your-apache-spark-jobs-part-2/ 英文博客
标签:executor,mb,调优篇,Yarn,yarn,内存,memory,spark 来源: https://www.cnblogs.com/yanshw/p/12049900.html