ICode9

精准搜索请尝试: 精确搜索
首页 > 系统相关> 文章详细

Python读取大文件的"坑“与内存占用检测

2021-12-11 15:34:24  阅读:331  来源: 互联网

标签:读取 Python open read 内存 rb buf


Python高级教程- Python进阶|Scrapy教程|Python高级|Python深入 (pythontab.com)

 

python读写文件的api都很简单,一不留神就容易踩”坑“。笔者记录一次踩坑历程,并且给了一些总结,希望到大家在使用python的过程之中,能够避免一些可能产生隐患的代码。

1.read()与readlines()
随手搜索python读写文件的教程,很经常看到read()与readlines()这对函数。所以我们会常常看到如下代码:

with open(file_path, 'rb') as f:
sha1Obj.update(f.read())
or
with open(file_path, 'rb') as f:
for line in f.readlines():
print(line)
  

这对方法在读取小文件时确实不会产生什么异常,但是一旦读取大文件,很容易会产生MemoryError,也就是内存溢出的问题。

 

####Why Memory Error?

我们首先来看看这两个方法:

 

当默认参数size=-1时,read方法会读取直到EOF,当文件大小大于可用内存时,自然会发生内存溢出的错误。

read方法
read([size])方法从文件当前位置起读取size个字节,若无参数size,则表示读取至文件结束为止,它范围为字符串对象

 

同样的,readlines会构造一个list。list而不是iter,所以所有的内容都会保存在内存之上,同样也会发生内存溢出的错误。

readlines方法
该方法每次读出一行内容,所以,读取时占用内存小,比较适合大文件,该方法返回一个字符串对象。

 

2.正确的用法
在实际运行的系统之中如果写出上述代码是十分危险的,这种”坑“十分隐蔽。所以接下来我们来了解一下正确用,正确的用法也很简单,依照API之中对函数的描述来进行对应的编码就OK了:

如果是二进制文件推荐用如下这种写法,可以自己指定缓冲区有多少byte。显然缓冲区越大,读取速度越快。

with open(file_path, 'rb') as f:
while True:
buf = f.read(1024)
if buf:
sha1Obj.update(buf)
else:
break
  而如果是文本文件,则可以用readline方法或直接迭代文件(python这里封装了一个语法糖,二者的内生逻辑一致,不过显然迭代文件的写法更pythonic )每次读取一行,效率是比较低的。笔者简单测试了一下,在3G文件之下,大概性能和前者差了20%.

with open(file_path, 'rb') as f:
while True:
line = f.readline()
if buf:
print(line)
else:
break
with open(file_path, 'rb') as f:
for line in f:
print(line)
  

3.内存检测工具的介绍
对于python代码的内存占用问题,对于代码进行内存监控十分必要。这里笔者这里推荐两个小工具来检测python代码的内存占用。

 

####memory_profiler

首先先用pip安装memory_profiler

pip install memory_profiler
  

from hashlib import sha1
import sys
@profile
def my_func():
sha1Obj = sha1()
with open(sys.argv[1], 'rb') as f:
while True:
buf = f.read(10 * 1024 * 1024)
if buf:
sha1Obj.update(buf)
else:
break
print(sha1Obj.hexdigest())
if __name__ == '__main__':
my_func()
  

之后在运行代码时加上** -m memory_profiler**

就可以了解函数每一步代码的内存占用了

guppy
依样画葫芦,仍然是通过pip先安装guppy

pip install guppy
  之后可以在代码之中利用guppy直接打印出对应各种python类型(list、tuple、dict等)分别创建了多少对象,占用了多少内存。
from guppy import hpy
import sys
def my_func():
mem = hpy()
with open(sys.argv[1], 'rb') as f:
while True:
buf = f.read(10 * 1024 * 1024)
if buf:
print(mem.heap())
else:
break
  

 

标签:读取,Python,open,read,内存,rb,buf
来源: https://www.cnblogs.com/huaobin/p/15675692.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有