Flink通过滚动窗口达到滑动窗口目的 节省内存和CPU资源(背压)
作者:互联网
Flink在实时处理滑动窗口数据时, 由于窗口时间长, 滑动较为频繁, 导致算子计算压力过大, 下游算子计算速度抵不上上游数据产生速度, 会出现背压现象.
需求: 统计6小时用户设备共同用户数, 每10min统计一次
公共类
@Data
@AllArgsConstructor
// flatMap转换对象
private static class UserDevice {
private final String userId;
private final String deviceId;
}
@Data
// 用户设备统计结果
// 第一个map存放用户最新设备, 直接put覆盖, 取最新设备
// 第二个map存放设备对应用户, 因为要去重, 所以使用set存放
private static class UserDeviceSummary {
private final Map<String, String> userDevices = new HashMap<>(60000); // (uid, did)
private final Map<String, Set<String>> deviceUsers = new HashMap<>(60000); // (did, Set<uid>)
}
原算子 滑动窗口
dataStreamSource
.flatMap((FlatMapFunction<JSONArray, UserDevice>) (array, collector) -> {
try {
array.forEach(e -> {
JSONObject one = (JSONObject) e;
// 只处理opay_show事件 app_name in ('opay', '1')
if (one.containsKey("uid") && one.containsKey("did")) {
collector.collect(new UserDevice(one.getString("uid"), one.getString("did")));
}
});
} catch (Exception ignored) {
}
}).returns(TypeInformation.of(new TypeHint<UserDevice>() {
})).name("Stream flat map")
.timeWindowAll(Time.hours(6), Time.minutes(10)) // 滑动窗口
.allowedLateness(Time.minutes(1))
.process(new ProcessAllWindowFunction<UserDevice, UserDeviceSummary, TimeWindow>() {
@Override
public void process(ProcessAllWindowFunction<UserDevice, UserDeviceSummary, TimeWindow>.Context context, Iterable<UserDevice> elements, Collector<UserDeviceSummary> out) throws Exception {
UserDeviceSummary uds = new UserDeviceSummary();
for (UserDevice ud : elements) {
try {
// 不用线程安全集合, 提升效率 由于并行度为1, 应该不会有并发
uds.getUserDevices().put(ud.getUserId(), ud.getDeviceId());
if (!uds.getDeviceUsers().containsKey(ud.getDeviceId())) {
uds.getDeviceUsers().put(ud.getDeviceId(), new HashSet<>());
}
uds.getDeviceUsers().get(ud.getDeviceId()).add(ud.getUserId());
} catch (Exception ignore) {
}
}
out.collect(uds);
}
}).name("Process to Map")
.process(new ProcessFunction<UserDeviceSummary, Map<String, Integer>>() {
@Override
public void processElement(UserDeviceSummary uds, ProcessFunction<UserDeviceSummary, Map<String, Integer>>.Context ctx, Collector<Map<String, Integer>> out) throws Exception {
Map<String, Integer> result = new HashMap<>();
for (String uid : uds.getUserDevices().keySet()) {
try {
int count = uds.getDeviceUsers().get(uds.getUserDevices().get(uid)).size();
result.put(uid, count);
} catch (Exception e) {
System.out.println("Process for sink error: " + e.getMessage());
}
}
out.collect(result);
// 清空数据 协助gc
uds.getUserDevices().clear();
uds.getDeviceUsers().clear();
result.clear();
}
}).name("User device calc").print();
开始运行正常, 随着时间的推移, 数据堆积越来越大, 滑动过程中, 最大会有6h / 10min = 36次并行计算, cpu压力比较大, 并行度只能为1
优化
使用滚动窗口替换滑动窗口, 既节省了内存, 也减少了cpu计算. 每10min滚动一次, 外部使用queue存储, 最大保存36个元素
private static final int SUMMARY_LIST_CAPACITY = 36;
// merge list中36个元素 生成一个新的元素, 输出到下游
private static UserDeviceSummary merge(List<UserDeviceSummary> list) {
UserDeviceSummary result = list.get(0);
// 此处最好应该添加summary时间, 避免长时间没数据流入导致数据错误
int length = Math.min(list.size(), SUMMARY_LIST_CAPACITY);
System.out.println("Merge tumbling summary: " + length);
for (int i = 1; i < length; i++) {
UserDeviceSummary current = list.get(i);
result.getUserDevices().putAll(current.getUserDevices());
current.getDeviceUsers().forEach((key, value) -> result.getDeviceUsers().merge(key, value, (s1, s2) -> {
s1.addAll(s2);
return s1;
}));
}
return result;
}
List<UserDeviceSummary> list = new LinkedList<>();
dataStreamSource
.flatMap((FlatMapFunction<JSONArray, UserDevice>) (array, collector) -> {
try {
array.forEach(e -> {
JSONObject one = (JSONObject) e;
// 只处理opay_show事件 app_name in ('opay', '1')
if (one.containsKey("uid") && one.containsKey("did")) {
collector.collect(new UserDevice(one.getString("uid"), one.getString("did")));
}
});
} catch (Exception ignored) {
}
}).returns(TypeInformation.of(new TypeHint<UserDevice>() {
})).name("Stream flat map")
.timeWindowAll(Time.minutes(10)) // 使用滚动窗口代替滑动窗口, 节省资源
.process(new ProcessAllWindowFunction<UserDevice, UserDeviceSummary, TimeWindow>() {
@Override
public void process(ProcessAllWindowFunction<UserDevice, UserDeviceSummary, TimeWindow>.Context context, Iterable<UserDevice> elements, Collector<UserDeviceSummary> out) throws Exception {
UserDeviceSummary uds = new UserDeviceSummary();
for (UserDevice ud : elements) {
try {
// 不用线程安全集合, 提升效率
uds.getUserDevices().put(ud.getUserId(), ud.getDeviceId());
if (!uds.getDeviceUsers().containsKey(ud.getDeviceId())) {
uds.getDeviceUsers().put(ud.getDeviceId(), new HashSet<>());
}
uds.getDeviceUsers().get(ud.getDeviceId()).add(ud.getUserId());
} catch (Exception ignore) {
}
}
list.add(uds);
if (list.size() > SUMMARY_LIST_CAPACITY) {
list.remove(0);
}
out.collect(merge(list));
}
}).name("Process to Map")
.process(new ProcessFunction<UserDeviceSummary, Map<String, Integer>>() {
@Override
public void processElement(UserDeviceSummary uds, ProcessFunction<UserDeviceSummary, Map<String, Integer>>.Context ctx, Collector<Map<String, Integer>> out) throws Exception {
Map<String, Integer> result = new HashMap<>();
for (String uid : uds.getUserDevices().keySet()) {
try {
int count = uds.getDeviceUsers().get(uds.getUserDevices().get(uid)).size();
result.put(uid, count);
} catch (Exception e) {
System.out.println("Process for sink error: " + e.getMessage());
}
}
out.collect(result);
uds.getUserDevices().clear();
uds.getDeviceUsers().clear();
result.clear();
}
}).name("User device calc").print();
再次部署, 服务运行正常!
标签:uds,窗口,Flink,背压,result,new,ud,getDeviceUsers,out 来源: https://blog.csdn.net/guandongsheng110/article/details/120783659