基于Redis实现分布式限流
作者:互联网
前言
限流的作用大家其实都知道, 单机版本下的限流有Guava的RateLimiter以及JDK自带的Semaphore, 都能满足需求. 但是线上业务出于各种原因考虑, 还需要分布式的限流, 比如扩容/缩容时无法控制整个服务的控制速率等场景.
开源的分布式限流组件有阿里巴巴的Sentinel, 但其实我们还可以利用Redis来实现一种更加轻量级的限流
模板方法
参考AQS的独占锁设计, 定义一个基类, 规定好模板, 由子类实现核心逻辑tryAcquire, 父类根据tryAcquire的返回结果来实现不同逻辑
代码
public abstract class RateLimiter {
private static final Logger LOGGER = LoggerFactory.getLogger(MethodHandles.lookup().lookupClass());
/**
* redis key中附带的唯一标记
*/
protected String name;
protected String prefix;
/**
* 支持修改速率
* 加上volatile是为了修改速率之后, 所有的线程都能感知到结果修改
* 分布式环境下这个变量可以存储在分布式的配置中心里面
*/
protected volatile int permitsPerSecond;
public void setRate(int permitsPerSecond) {
this.permitsPerSecond = permitsPerSecond;
}
public String getName() {
return name;
}
public boolean acquire() throws InterruptedException {
return acquire(1);
}
/**
* 当获取不到permit(许可)时, 陷入睡眠, 睡眠时间由子类tryAcquire定义
* 返回0时表示获取到了permit
*/
public boolean acquire(int permits) throws InterruptedException {
while (true) {
long sleepTime = tryAcquire(permits);
LOGGER.info("{} sleep {} ms", Thread.currentThread().getName(), sleepTime);
if (sleepTime == 0) {
return true;
}
// 异常抛出, 响应中断
Thread.sleep(sleepTime);
}
}
public abstract long tryAcquire();
/**
* 由子类实现, 方法逻辑为尝试获取许可, 获取不到则返回需要睡眠的时间
*/
public abstract long tryAcquire(int permits);
}
方法一 固定时间段限流
该方法是Redis官方推荐的一种方法, 具体逻辑为在Redis每秒生成一个key, key就是前缀+描级时间戳, value存储计数器, 当计数器中的数减到小于0时, 代表超出了并发限制. 且为每一个key设置10s的过期时间, 到期自动清除
优点
- 实现简单, 逻辑清晰
- 在对齐的窗口(时间片)上满足频率要求, 不对齐的时间片上最多是频率限制的2倍, 如果业务系统能满足这种波动, 那么问题不大
缺点
- 只能在固定时间片窗口内限流(1s), 无法做到滑动窗口限流
- 不适用于那种严格限制速率的场景
- 无法像Guava的RateLimiter那样, 支持预消费
核心逻辑
细节见代码与注释
public class FixedWindowRedisRateLimiter extends RateLimiter {
public FixedWindowRedisRateLimiter(int permitsPerSecond) {
this(UUID.randomUUID().toString(), permitsPerSecond);
}
public FixedWindowRedisRateLimiter(String name, int permitsPerSecond) {
this.permitsPerSecond = permitsPerSecond;
this.name = name;
this.prefix = "F:RATE_LIMIT:";
}
private String getRedisKey(long currentSeconds) {
return String.format("%s:%s:%s", prefix, name, currentSeconds);
}
@Override
public long tryAcquire() {
return tryAcquire(1);
}
@Override
public long tryAcquire(int permits) {
long epochSecond = Instant.now().getEpochSecond();
// 睡眠到下一个时间窗口
long sleepTime = 1000 * (epochSecond + 1) - System.currentTimeMillis();
String redisKey = getRedisKey(epochSecond);
// 核心逻辑
RedisUtils.setNx(redisKey, String.valueOf(permitsPerSecond), 1000);
long val = RedisUtils.decr(redisKey);
// val>=0时, 表示获取到了permit
if (val >= 0) return 0;
return sleepTime;
}
}
tryAcquire测试用例
使用CountDownLatch与CyclicBarrier配合完成并发测试
@Test
public void testTryAcquire1() throws Exception {
int currentSize = 20;
AtomicInteger atomicInteger = new AtomicInteger(currentSize);
// 用于控制main线程结束
CountDownLatch countDownLatch = new CountDownLatch(currentSize);
// 用于控制并发, 一起发起请求
CyclicBarrier cyclicBarrier = new CyclicBarrier(currentSize);
RateLimiter rateLimiter = new FixedWindowRedisRateLimiter("custom", 3);
for (int i = 0; i < currentSize; i++) {
EXECUTORS.submit(new Runnable() {
@Override
public void run() {
for (int i = 0; i < 10; i++) {
try {
cyclicBarrier.await();
} catch (Exception e) {
// do nothing
}
LOGGER.info("{} tryAcquire result {}", Thread.currentThread().getName(), rateLimiter.tryAcquire());
int mark = atomicInteger.incrementAndGet();
// 分割线
if (mark % 20 == 0) LOGGER.info("********************************");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// do nothing
}
}
countDownLatch.countDown();
}
});
}
countDownLatch.await();
}
tryAcquire测试用例结果
从结果来看符合预期, 在秒级时间戳窗口中, 一次只有三个线程获取到了permit
2021-01-10 21:31:46.693 pool-1-thread-14 tryAcquire result 920
2021-01-10 21:31:46.695 pool-1-thread-17 tryAcquire result 920
2021-01-10 21:31:46.692 pool-1-thread-6 tryAcquire result 920
2021-01-10 21:31:46.693 pool-1-thread-4 tryAcquire result 919
2021-01-10 21:31:46.693 pool-1-thread-5 tryAcquire result 920
2021-01-10 21:31:46.693 pool-1-thread-10 tryAcquire result 0
2021-01-10 21:31:46.693 pool-1-thread-8 tryAcquire result 0
2021-01-10 21:31:46.693 pool-1-thread-19 tryAcquire result 919
2021-01-10 21:31:46.692 pool-1-thread-11 tryAcquire result 920
2021-01-10 21:31:46.693 pool-1-thread-20 tryAcquire result 920
2021-01-10 21:31:46.693 pool-1-thread-12 tryAcquire result 919
2021-01-10 21:31:46.693 pool-1-thread-9 tryAcquire result 919
2021-01-10 21:31:46.693 pool-1-thread-16 tryAcquire result 920
2021-01-10 21:31:46.693 pool-1-thread-15 tryAcquire result 919
2021-01-10 21:31:46.693 pool-1-thread-3 tryAcquire result 920
2021-01-10 21:31:46.693 pool-1-thread-1 tryAcquire result 920
2021-01-10 21:31:46.693 pool-1-thread-7 tryAcquire result 920
2021-01-10 21:31:46.693 pool-1-thread-18 tryAcquire result 919
2021-01-10 21:31:46.693 pool-1-thread-2 tryAcquire result 0
2021-01-10 21:31:46.693 pool-1-thread-13 tryAcquire result 919
2021-01-10 21:31:46.699 ********************************
2021-01-10 21:31:47.709 pool-1-thread-2 tryAcquire result 0
2021-01-10 21:31:47.709 pool-1-thread-19 tryAcquire result 0
2021-01-10 21:31:47.709 pool-1-thread-8 tryAcquire result 0
2021-01-10 21:31:47.709 pool-1-thread-10 tryAcquire result 297
2021-01-10 21:31:47.709 pool-1-thread-12 tryAcquire result 297
2021-01-10 21:31:47.709 pool-1-thread-11 tryAcquire result 297
2021-01-10 21:31:47.709 pool-1-thread-6 tryAcquire result 296
2021-01-10 21:31:47.710 pool-1-thread-20 tryAcquire result 297
2021-01-10 21:31:47.710 pool-1-thread-4 tryAcquire result 296
2021-01-10 21:31:47.710 pool-1-thread-17 tryAcquire result 296
2021-01-10 21:31:47.710 pool-1-thread-9 tryAcquire result 296
2021-01-10 21:31:47.710 pool-1-thread-15 tryAcquire result 296
2021-01-10 21:31:47.710 pool-1-thread-5 tryAcquire result 296
2021-01-10 21:31:47.710 pool-1-thread-14 tryAcquire result 296
2021-01-10 21:31:47.710 pool-1-thread-13 tryAcquire result 296
2021-01-10 21:31:47.710 pool-1-thread-1 tryAcquire result 296
2021-01-10 21:31:47.710 pool-1-thread-18 tryAcquire result 296
2021-01-10 21:31:47.711 pool-1-thread-3 tryAcquire result 296
2021-01-10 21:31:47.711 pool-1-thread-16 tryAcquire result 296
2021-01-10 21:31:47.711 pool-1-thread-7 tryAcquire result 296
2021-01-10 21:31:47.711 ********************************
方法二 时间段不固定限流
该方法也是Redis官网推荐的一种方法, 利用Redis的list数据结构, 也是在固定的时间段内进行限流, 有别于第一种方法的是选取的时间片不再是根据秒级时间戳, 具体见下面Redis官网的一段伪代码
Redis官网伪代码
这段伪代码存在并发问题, 所以实际使用中需要利用Lua脚本包装一下
FUNCTION LIMIT_API_CALL(ip)
current = LLEN(ip)
IF current > 10 THEN
ERROR "too many requests per second"
ELSE
IF EXISTS(ip) == FALSE
MULTI
RPUSH(ip,ip)
EXPIRE(ip,1)
EXEC
ELSE
RPUSHX(ip,ip)
END
PERFORM_API_CALL()
END
优点
相较于第一种方法, 该方法的优点在于list中可以存储ip等数据, 在特定场景下可能会有用. 以及优化了第一种方法中的按照秒级时间戳来选取时间段的方式, 改为不固定
缺点
- 第一种有的缺点, 第二种照样有
- 当QPS特别大时, list会膨胀, 按照一个value 1Byte来算, 30wQPS需要存储30w个value, 30w/1024, 接近300KB
核心逻辑
细节见代码与注释
public class SlidingWindowRedisRateLimiter extends RateLimiter {
private static final String NEW_LINE = "\n";
private static final String LUA_SCRIPT;
// 越短越好
private static final String PUSH_DATA = "VALUE";
private static final long SUCCESS_VAL = -1;
// 容错时间
private static final long REDIS_NET_TIME = 3;
// 核心逻辑就是这段lua脚本, 也就是上文提到的官网伪代码的lua代码版本
static {
StringBuilder sb = new StringBuilder();
// -1表示成功, 因为无法区分llen为0是不存在了, 还是已经到0s了
String returnSuccess = "return " + SUCCESS_VAL;
// 数据定义
sb.append("local key = KEYS[1]").append(NEW_LINE);
sb.append("local limit = ARGV[1]").append(NEW_LINE);
sb.append("local expireTime = ARGV[2]").append(NEW_LINE);
sb.append("local pushData = ARGV[3]").append(NEW_LINE);
sb.append("local permit = ARGV[4]").append(NEW_LINE);
// len+permit大于limit
sb.append("local len = redis.call('llen', key)").append(NEW_LINE);
sb.append("if tonumber(len) + tonumber(permit) > tonumber(limit) then").append(NEW_LINE);
sb.append("return redis.call('pttl', key)").append(NEW_LINE);
sb.append("end").append(NEW_LINE);
// 当key不存在时, 放入permit数量的数据, 然后设置过期时间
sb.append("if tonumber(len) == 0 then").append(NEW_LINE);
sb.append("for i = 0, permit - 1, 1 do").append(NEW_LINE);
sb.append("redis.call('rpush', key, pushData)").append(NEW_LINE);
sb.append("end").append(NEW_LINE);
sb.append("redis.call('expire', key, expireTime)").append(NEW_LINE);
sb.append(returnSuccess).append(NEW_LINE);
sb.append("end").append(NEW_LINE);
// key存在, 放入permit数量的数据
sb.append("for i = 0, permit - 1, 1 do").append(NEW_LINE);
sb.append("redis.call('rpush', key, pushData)").append(NEW_LINE);
sb.append("end").append(NEW_LINE);
sb.append(returnSuccess).append(NEW_LINE);
LUA_SCRIPT = sb.toString();
}
public SlidingWindowRedisRateLimiter(int permitsPerSecond) {
this(UUID.randomUUID().toString(), permitsPerSecond);
}
public SlidingWindowRedisRateLimiter(String name, int permitsPerSecond) {
this.permitsPerSecond = permitsPerSecond;
this.name = name;
this.prefix = "S:RATE_LIMIT:";
}
private String getRedisKey() {
return String.format("%s:%s", prefix, name);
}
@Override
public long tryAcquire() {
return tryAcquire(1);
}
@Override
public long tryAcquire(int permits) {
String[] keys = new String[]{getRedisKey()};
String[] args = new String[]{String.valueOf(permitsPerSecond), String.valueOf(1), PUSH_DATA, String.valueOf(permits)};
Long result = RedisUtils.eval(LUA_SCRIPT, keys, args, ScriptOutputType.INTEGER);
if (Objects.equals(result, SUCCESS_VAL)) return 0;
// 减去Redis可能得网络开销时间
return result - REDIS_NET_TIME;
}
}
tryAcquire测试用例
与方法一使用到的test case差不对, 都是使用CountDownLatch与CyclicBarrier配合完成并发测试
@Test
public void testAcquire2() throws InterruptedException {
int currentSize = 20;
AtomicInteger atomicInteger = new AtomicInteger(currentSize);
CountDownLatch countDownLatch = new CountDownLatch(currentSize);
CyclicBarrier cyclicBarrier = new CyclicBarrier(currentSize);
RateLimiter rateLimiter = new SlidingWindowRedisRateLimiter("custom", 3);
for (int i = 0; i < currentSize; i++) {
EXECUTORS.submit(new Runnable() {
@Override
public void run() {
for (int i = 0; i < 10; i++) {
try {
cyclicBarrier.await();
} catch (Exception e) {
// do nothing
}
LOGGER.info("{} tryAcquire result {}", Thread.currentThread().getName(), rateLimiter.tryAcquire());
int mark = atomicInteger.incrementAndGet();
// 分割线
if (mark % 20 == 0) LOGGER.info("********************************");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// do nothing
}
}
countDownLatch.countDown();
}
});
}
countDownLatch.await();
}
tryAcquire测试用例结果
从结果来看符合预期, 一次只有三个线程获取到了permit
2021-01-11 01:14:30.783 pool-1-thread-4 tryAcquire result 0
2021-01-11 01:14:30.783 pool-1-thread-2 tryAcquire result 990
2021-01-11 01:14:30.783 pool-1-thread-6 tryAcquire result 991
2021-01-11 01:14:30.783 pool-1-thread-1 tryAcquire result 0
2021-01-11 01:14:30.783 pool-1-thread-17 tryAcquire result 992
2021-01-11 01:14:30.783 pool-1-thread-14 tryAcquire result 991
2021-01-11 01:14:30.783 pool-1-thread-11 tryAcquire result 0
2021-01-11 01:14:30.783 pool-1-thread-12 tryAcquire result 992
2021-01-11 01:14:30.783 pool-1-thread-16 tryAcquire result 994
2021-01-11 01:14:30.783 pool-1-thread-18 tryAcquire result 992
2021-01-11 01:14:30.783 pool-1-thread-9 tryAcquire result 990
2021-01-11 01:14:30.783 pool-1-thread-10 tryAcquire result 993
2021-01-11 01:14:30.783 pool-1-thread-8 tryAcquire result 994
2021-01-11 01:14:30.783 pool-1-thread-3 tryAcquire result 990
2021-01-11 01:14:30.783 pool-1-thread-20 tryAcquire result 992
2021-01-11 01:14:30.783 pool-1-thread-15 tryAcquire result 993
2021-01-11 01:14:30.783 pool-1-thread-7 tryAcquire result 993
2021-01-11 01:14:30.783 pool-1-thread-19 tryAcquire result 993
2021-01-11 01:14:30.783 pool-1-thread-5 tryAcquire result 991
2021-01-11 01:14:30.783 pool-1-thread-13 tryAcquire result 994
2021-01-11 01:14:30.785 ********************************
2021-01-11 01:14:31.794 pool-1-thread-19 tryAcquire result 0
2021-01-11 01:14:31.794 pool-1-thread-7 tryAcquire result 997
2021-01-11 01:14:31.794 pool-1-thread-13 tryAcquire result 996
2021-01-11 01:14:31.794 pool-1-thread-20 tryAcquire result 996
2021-01-11 01:14:31.794 pool-1-thread-3 tryAcquire result 995
2021-01-11 01:14:31.794 pool-1-thread-8 tryAcquire result 995
2021-01-11 01:14:31.794 pool-1-thread-9 tryAcquire result 995
2021-01-11 01:14:31.794 pool-1-thread-16 tryAcquire result 994
2021-01-11 01:14:31.794 pool-1-thread-6 tryAcquire result 0
2021-01-11 01:14:31.794 pool-1-thread-11 tryAcquire result 993
2021-01-11 01:14:31.794 pool-1-thread-5 tryAcquire result 0
2021-01-11 01:14:31.794 pool-1-thread-17 tryAcquire result 993
2021-01-11 01:14:31.794 pool-1-thread-12 tryAcquire result 994
2021-01-11 01:14:31.794 pool-1-thread-18 tryAcquire result 994
2021-01-11 01:14:31.794 pool-1-thread-10 tryAcquire result 995
2021-01-11 01:14:31.794 pool-1-thread-15 tryAcquire result 996
2021-01-11 01:14:31.795 pool-1-thread-14 tryAcquire result 993
2021-01-11 01:14:31.795 pool-1-thread-2 tryAcquire result 993
2021-01-11 01:14:31.795 pool-1-thread-1 tryAcquire result 993
2021-01-11 01:14:31.795 pool-1-thread-4 tryAcquire result 992
2021-01-11 01:14:31.795 ********************************
方法四 利用有序集合实现滑动窗口
待更新
方法三 令牌桶算法在Redis中的实现
待更新
标签:01,thread,Redis,tryAcquire,限流,result,2021,pool,分布式 来源: https://www.cnblogs.com/plumswine/p/14260365.html