分布式之数据库和缓存双写一致性方案解析
作者:互联网
首先,缓存由于其高并发和高性能的特性,已经在项目中被广泛使用。在读取缓存方面,大家没啥疑问,都是按照下图的流程来进行业务操作。
但是在更新缓存方面,对于更新完数据库,是更新缓存呢,还是删除缓存。
又或者是先删除缓存,再更新数据库,其实大家存在很大的争议。
目前没有一篇全面的博客,对这几种方案进行解析。于是博主战战兢兢,顶着被大家喷的风险,写了这篇文章。
(1)先更新数据库,再更新缓存
这套方案,大家是普遍反对的。为什么呢?有如下两点原因。
原因一(线程安全角度)
同时有请求A和请求B进行更新操作,那么会出现
(1)线程A更新了数据库
(2)线程B更新了数据库
(3)线程B更新了缓存
(4)线程A更新了缓存
这就出现请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存。这就导致了脏数据,因此不考虑。
原因二(业务场景角度)
有如下两点:
(1)如果你是一个写数据库场景比较多,而读数据场景比较少的业务需求,采用这种方案就会导致,数据压根还没读到,缓存就被频繁的更新,浪费性能。
(2)如果你写入数据库的值,并不是直接写入缓存的,而是要经过一系列复杂的计算再写入缓存。那么,每次写入数据库后,都再次计算写入缓存的值,无疑是浪费性能的。显然,删除缓存更为适合。
接下来讨论的就是争议最大的,先删缓存,再更新数据库。还是先更新数据库,再删缓存的问题。
(2)先删缓存,再更新数据库
该方案会导致不一致的原因是。同时有一个请求A进行更新操作,另一个请求B进行查询操作。那么会出现如下情形:
(1)请求A进行写操作,删除缓存
(2)请求B查询发现缓存不存在
(3)请求B去数据库查询得到旧值
(4)请求B将旧值写入缓存
(5)请求A将新值写入数据库
上述情况就会导致不一致的情形出现。而且,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。
那么,如何解决呢?采用延时双删策略
伪代码如下
public void write(String key,Object data){ redis.delKey(key); db.updateData(data); Thread.sleep(1000); redis.delKey(key); }
转化为中文描述就是
(1)先淘汰缓存
(2)再写数据库(这两步和原来一样)
(3)休眠1秒,再次淘汰缓存
这么做,可以将1秒内所造成的缓存脏数据,再次删除。
那么,这个1秒怎么确定的,具体该休眠多久呢?
针对上面的情形,读者应该自行评估自己的项目的读数据业务逻辑的耗时。然后写数据的休眠时间则在读数据业务逻辑的耗时基础上,加几百ms即可。这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。
如何解决?
提供一个保障的重试机制即可,这里给出两套方案。
方案一:
如下图所示
流程如下所示
(1)更新数据库数据;
(2)缓存因为种种问题删除失败
(3)将需要删除的key发送至消息队列
(4)自己消费消息,获得需要删除的key
(5)继续重试删除操作,直到成功
然而,该方案有一个缺点,对业务线代码造成大量的侵入。于是有了方案二,在方案二中,启动一个订阅程序去订阅数据库的binlog,获得需要操作的数据。在应用程序中,另起一段程序,获得这个订阅程序传来的信息,进行删除缓存操作。
方案二:
流程如下图所示:
(1)更新数据库数据
(2)数据库会将操作信息写入binlog日志当中
(3)订阅程序提取出所需要的数据以及key
(4)另起一段非业务代码,获得该信息
(5)尝试删除缓存操作,发现删除失败
(6)将这些信息发送至消息队列
(7)重新从消息队列中获得该数据,重试操作。
备注说明:上述的订阅binlog程序在mysql中有现成的中间件叫canal,可以完成订阅binlog日志的功能。至于oracle中,博主目前不知道有没有现成中间件可以使用。另外,重试机制,博主是采用的是消息队列的方式。如果对一致性要求不是很高,直接在程序中另起一个线程,每隔一段时间去重试即可,这些大家可以灵活自由发挥,只是提供一个思路。
标签:缓存,请求,删除,数据库,写入,更新,双写,分布式 来源: https://www.cnblogs.com/tracydzf/p/15787689.html