编程语言
首页 > 编程语言> > 源码篇:ThreadLocal的奇思妙想(万字图文)

源码篇:ThreadLocal的奇思妙想(万字图文)

作者:互联网

前言

ThreadLocal的文章在网上也有不少,但是看了一些后,理解起来总感觉有绕,而且看了ThreadLocal的源码,无论是线程隔离、类环形数组、弱引用结构等等,实在是太有意思了!我必须也要让大家全面感受下其中所蕴含的那些奇思妙想! 所以这里我想写一篇超几儿通俗易懂解析ThreadLocal的文章,相关流程会使用大量图示解析,以证明:我是干货,不是水比!

ThreadLocal这个类加上庞大的注释,总共也才七百多行,而且你把这个类的代码拷贝出来,你会发现,它几乎没有报错!耦合度极低!(唯一的报错是因为ThreadLocal类引用了Thread类里的一个包内可见变量,所以把代码复制出来,这个变量访问就报错了,仅仅只有此处报错!)

ThreadLocal的线程数据隔离,替换算法,擦除算法,都是有必要去了解了解,仅仅少量的代码,却能实现如此精妙的功能,让我们来体会下 Josh Bloch 和 Doug Lea 俩位大神,巧夺天工之作吧!

一些说明

这篇文章画了不少图,大概画了十八张图,关于替换算法和擦除算法,这俩个方法所做的事情,如果不画图,光用文字描述的话,十分的抽象且很难描述清楚;希望这些流程图,能让大家更能体会这些精炼代码的魅力!

image-20210506091320057

使用

哔哔原理之前,必须要先来看下使用

public class Main {

    public static void main(String[] args) {
        ThreadLocal<String> threadLocalOne = new ThreadLocal<>();
        ThreadLocal<String> threadLocalTwo = new ThreadLocal<>();

        new Thread(new Runnable() {
            @Override
            public void run() {
                threadLocalOne.set("线程一的数据 --- threadLocalOne");
                threadLocalTwo.set("线程一的数据 --- threadLocalTwo");
                System.out.println(threadLocalOne.get());
                System.out.println(threadLocalTwo.get());
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println(threadLocalOne.get());
                System.out.println(threadLocalTwo.get());
                threadLocalOne.set("线程二的数据 --- threadLocalOne");
                threadLocalTwo.set("线程二的数据 --- threadLocalTwo");
                System.out.println(threadLocalOne.get());
                System.out.println(threadLocalTwo.get());
            }
        }).start();
    }
}
线程一的数据 --- threadLocalOne
线程一的数据 --- threadLocalTwo
null
null
线程二的数据 --- threadLocalOne
线程二的数据 --- threadLocalTwo

前置知识

在解释ThreadLocal整体逻辑前,需要先了解几个前置知识

下面这些前置知识,是在说set和get前,必须要先了解的知识点,了解下面这些知识点,才能更好去了解整个存取流程

线程隔离

在上面的ThreadLocal的使用中,我们发现一个很有趣的事情,ThreadLocal在不同的线程,好像能够存储不同的数据:就好像ThreadLocal本身具有存储功能,到了不同线程,能够生成不同的'副本'存储数据一样

实际上,ThreadLocal到底是怎么做到的呢?

//存数据
public void set(T value) {
    Thread t = Thread.currentThread();
    ThreadLocal.ThreadLocalMap map = getMap(t);
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
}

//获取当前Thread的threadLocals变量
ThreadLocal.ThreadLocalMap getMap(Thread t) {
    return t.threadLocals;
}

//Thread类
public class Thread implements Runnable {
    ...
        
    /* ThreadLocal values pertaining to this thread. This map is maintained
     * by the ThreadLocal class. */
    ThreadLocal.ThreadLocalMap threadLocals = null;
    
    ...
}

线程隔离

Entry

强引用:不管内存多么紧张,gc永不回收强引用的对象

软引用:当内存不足,gc对软引用对象进行回收

弱引用:gc发现弱引用,就会立刻回收弱引用对象

软引用:在任何时候都可能被垃圾回收器回收

Entry就是一个实体类,这个实体类有俩个属性:key、value,key是就是咱们常说的的弱引用

当我们执行ThreadLocal的set操作,第一次则新建一个Entry或后续set则覆盖改Entry的value,塞到当前Thread的ThreadLocals变量中

static class Entry extends WeakReference<ThreadLocal<?>> {
    /** The value associated with this ThreadLocal. */
    Object value;

    Entry(ThreadLocal<?> k, Object v) {
        super(k);
        value = v;
    }
}

Entry结构

你可能会想,what?我用ThreadLocal来set一个数据,然后gc一下,我Entry里面key变量引用链就断开了?

img

public class Main {

    public static void main(String[] args) {
        ThreadLocal<String> threadLocalOne = new ThreadLocal<>();

        new Thread(new Runnable() {
            @Override
            public void run() {
                threadLocalOne.set("线程一的数据 --- threadLocalOne");
                System.gc();
                System.out.println(threadLocalOne.get());
            }
        }).start();
    }
}
线程一的数据 --- threadLocalOne

看来这里gc了个寂寞。。。

在这里,必须明确一个道理:gc回收弱引用对象,是先回收弱引用的对象,弱引用链自然断开;而不是先断开引用链,再回收对象。Entry里面key对ThreadLocal的引用是弱引用,但是threadLocalOne对ThreadLocal的引用是强引用啊,所以ThreadLocal这个对象是没法被回收的

Entry的key值引用链

public class Main {
    static ThreadLocal<String> threadLocalOne = new ThreadLocal<>();

    public static void main(String[] args) {
        new Thread(new Runnable() {
            @Override
            public void run() {
                threadLocalOne.set("线程一的数据 --- threadLocalOne");
                try {
                    threadLocalOne = null;
                    System.gc();

                    //下面代码来自:https://blog.csdn.net/thewindkee/article/details/103726942
                    Thread t = Thread.currentThread();
                    Class<? extends Thread> clz = t.getClass();
                    Field field = clz.getDeclaredField("threadLocals");
                    field.setAccessible(true);
                    Object threadLocalMap = field.get(t);
                    Class<?> tlmClass = threadLocalMap.getClass();
                    Field tableField = tlmClass.getDeclaredField("table");
                    tableField.setAccessible(true);
                    Object[] arr = (Object[]) tableField.get(threadLocalMap);
                    for (Object o : arr) {
                        if (o == null) continue;
                        Class<?> entryClass = o.getClass();
                        Field valueField = entryClass.getDeclaredField("value");
                        Field referenceField = entryClass.getSuperclass().getSuperclass().getDeclaredField("referent");
                        valueField.setAccessible(true);
                        referenceField.setAccessible(true);
                        System.out.println(String.format("弱引用key:%s    值:%s", referenceField.get(o), valueField.get(o)));
                    }
                } catch (Exception e) { }
            }
        }).start();
    }
}
弱引用key:null    值:线程一的数据 --- threadLocalOne
弱引用key:java.lang.ThreadLocal@387567b2    值:java.lang.ref.SoftReference@2021fb3f

img

ThreadLocalMap环形结构

public class ThreadLocal<T> {
    
    ...
    
    static class ThreadLocalMap {

        static class Entry extends WeakReference<ThreadLocal<?>> {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal<?> k, Object v) {
                super(k);
                value = v;
            }
        }
        
        /**
         * The table, resized as necessary.
         * table.length MUST always be a power of two.
         */
        private Entry[] table;

        ...
    }
}

img

UML时序图

public class ThreadLocal<T> {
    
    ...
    
    static class ThreadLocalMap {
        ...
            
        private static int nextIndex(int i, int len) {
            return ((i + 1 < len) ? i + 1 : 0);
        }
           
        ...
    }
}

Entry结构变形

set

总流程

public void set(T value) {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
}

ThreadLocalMap getMap(Thread t) {
    return t.threadLocals;
}

void createMap(Thread t, T firstValue) {
    t.threadLocals = new ThreadLocalMap(this, firstValue);
}

ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
    table = new Entry[INITIAL_CAPACITY];
    int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
    table[i] = new Entry(firstKey, firstValue);
    size = 1;
    setThreshold(INITIAL_CAPACITY);
}
 private static final int INITIAL_CAPACITY = 16;

ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
    table = new Entry[INITIAL_CAPACITY];
    ...
}

set总流程

map.set

private void set(ThreadLocal<?> key, Object value) {

    // We don't use a fast path as with get() because it is at
    // least as common to use set() to create new entries as
    // it is to replace existing ones, in which case, a fast
    // path would fail more often than not.

    Entry[] tab = table;
    int len = tab.length;
    int i = key.threadLocalHashCode & (len-1);

    for (Entry e = tab[i];
         e != null;
         e = tab[i = nextIndex(i, len)]) {
        ThreadLocal<?> k = e.get();

        if (k == key) {
            e.value = value;
            return;
        }

        if (k == null) {
            replaceStaleEntry(key, value, i);
            return;
        }
    }

    tab[i] = new Entry(key, value);
    int sz = ++size;
    if (!cleanSomeSlots(i, sz) && sz >= threshold)
        rehash();
}

取哈希值

public class ThreadLocal<T> {
    private final int threadLocalHashCode = nextHashCode();

    private static final int HASH_INCREMENT = 0x61c88647;
    
    private static AtomicInteger nextHashCode = new AtomicInteger();

    private void set(ThreadLocal<?> key, Object value) {
        ...
        int i = key.threadLocalHashCode & (len-1);
        ...
    }

    private static int nextHashCode() {
        return nextHashCode.getAndAdd(HASH_INCREMENT);
    }
}
public class Main {
    public static void main(String[] args) {
        AtomicInteger atomicInteger = new AtomicInteger();
        
        System.out.println(atomicInteger.getAndAdd(1));  //0
        System.out.println(atomicInteger.getAndAdd(1));  //1
        System.out.println(atomicInteger.getAndAdd(1));  //2
    }
}

该值的相加,符合斐波那契散列法,可以使得的低位的二进制数值分布的更加均匀,这样会减少在数组中产生hash冲突的次数

具体分析可查看:从 ThreadLocal 的实现看散列算法

等等大家有没有看到 threadLocalHashCode = nextHashCode(),nextHashCode()是获取下一个节点的方法啊,这是什么鬼?

难道每次使用key.threadLocalHashCode的时候,HashCode都会变?

public class ThreadLocal<T> {
    private final int threadLocalHashCode = nextHashCode();
}

好像又发现一个问题!threadHashCode通过 nextHashCode() 获取HashCode,然后nextHashCode是使用AtomicInteger类型的 nextHashCode变量相加,这玩意每次实例化的时候不都会归零吗?

难道我们每次新的ThreadLocal实例获取HashCode的时候,都要从0开始相加?

public class ThreadLocal<T> {
    private final int threadLocalHashCode = nextHashCode();

    private static final int HASH_INCREMENT = 0x61c88647;
    
    private static AtomicInteger nextHashCode = new AtomicInteger();

    private static int nextHashCode() {
        return nextHashCode.getAndAdd(HASH_INCREMENT);
    }
}

总结

img

取index值

上面代码中,用取得的hash值,与ThreadLocalMap实例中数组长度减一的与操作,计算出了index值

这个很重要的,因为大于长度的高位hash值是不需要的

此处会将传入的ThreadLocal实例计算出一个hash值,怎么计算的后面再说,这地方有个位与的操作,这地方是和长度减一的与操作,这个很重要的,因为大于长度的高位hash值是不需要的

hash值低位与操作

塞值

private void set(ThreadLocal<?> key, Object value) {
    Entry[] tab = table;
    int len = tab.length;
    int i = key.threadLocalHashCode & (len-1);

    for (Entry e = tab[i];  e != null; e = tab[i = nextIndex(i, len)]) {
        ThreadLocal<?> k = e.get();

        if (k == key) {
            e.value = value;
            return;
        }

        if (k == null) {
            replaceStaleEntry(key, value, i);
            return;
        }
    }

    tab[i] = new Entry(key, value);
    ...
}

分析下塞值流程

  1. 如果获取的这Entry是null,则直接结束这个循环体
    • 在Entry数组的index塞入一个新生成的节点
  2. 如果获取的这Entry不为null
    1. key值相等,说明Entry对象存在,覆盖其value值即可
    2. key为null,说明该节点可被替换(替换算法后面讲),new一个Entry对象,在此节点存储数据
    3. 如果key不相等且不为null,循环获取下一节点的Entry对象,并重复上述逻辑

整体的逻辑比较清晰,如果key已存在,则覆盖;不存在,index位置是否可用,可用则使用该节点,不可用,往后寻找可用节点:线性探测法

map.set流程

替换算法

在上述set方法中,当生成的index节点,已被占用,会向后探测可用节点

private void set(ThreadLocal<?> key, Object value) {
    Entry[] tab = table;
    int len = tab.length;
    int i = key.threadLocalHashCode & (len-1);

    for (Entry e = tab[i];  e != null; e = tab[i = nextIndex(i, len)]) {
        ThreadLocal<?> k = e.get();
		...
        if (k == null) {
            replaceStaleEntry(key, value, i);
            return;
        }
    }
    ...
}
private static int prevIndex(int i, int len) {
    return ((i - 1 >= 0) ? i - 1 : len - 1);
}

private void replaceStaleEntry(ThreadLocal<?> key, Object value, int staleSlot) {
    Entry[] tab = table;
    int len = tab.length;
    Entry e;

    // Back up to check for prior stale entry in current run.
    // We clean out whole runs at a time to avoid continual
    // incremental rehashing due to garbage collector freeing
    // up refs in bunches (i.e., whenever the collector runs).
    int slotToExpunge = staleSlot;
    for (int i = prevIndex(staleSlot, len); (e = tab[i]) != null; i = prevIndex(i, len))
        if (e.get() == null)
            slotToExpunge = i;

    // Find either the key or trailing null slot of run, whichever
    // occurs first
    for (int i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) {
        ThreadLocal<?> k = e.get();

        // If we find key, then we need to swap it
        // with the stale entry to maintain hash table order.
        // The newly stale slot, or any other stale slot
        // encountered above it, can then be sent to expungeStaleEntry
        // to remove or rehash all of the other entries in run.
        if (k == key) {
            e.value = value;

            tab[i] = tab[staleSlot];
            tab[staleSlot] = e;

            // Start expunge at preceding stale entry if it exists
            if (slotToExpunge == staleSlot)
                slotToExpunge = i;
            cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
            return;
        }

        // If we didn't find stale entry on backward scan, the
        // first stale entry seen while scanning for key is the
        // first still present in the run.
        if (k == null && slotToExpunge == staleSlot)
            slotToExpunge = i;
    }

    // If key not found, put new entry in stale slot
    tab[staleSlot].value = null;
    tab[staleSlot] = new Entry(key, value);

    // If there are any other stale entries in run, expunge them
    if (slotToExpunge != staleSlot)
        cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
}

替换算法-前探测

替换算法-后探测(需复写)

替换算法-后探测(null节点)

private void replaceStaleEntry(ThreadLocal<?> key, Object value, int staleSlot) {
   	...
    for (int i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) {
        ...
        if (k == null && slotToExpunge == staleSlot)
            slotToExpunge = i;
    }
	...
}

替换算法-后探测(寻找key为null)

img

为什么这俩个循环都这么执着的,想改变slotToExpunge的数值呢?

private void replaceStaleEntry(ThreadLocal<?> key, Object value, int staleSlot) {
    ...
    int slotToExpunge = staleSlot;
    ...
    if (slotToExpunge != staleSlot)
        cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
}

明白了吧!都是为了替换方法里面的最后一段逻辑:为了判断是否需要执行擦除算法

总结

总结

来总结下

set总流程

map.set流程(完善)

这俩个图示,大概描述了ThreadLocal进行set操作的整个流程;现在,进入下一个栏目吧,来看看ThreadLocal的get操作!

get

get流程,总体要比set流程简单很多,可以轻松一下了

总流程

public T get() {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null) {
        ThreadLocalMap.Entry e = map.getEntry(this);
        if (e != null) {
            @SuppressWarnings("unchecked")
            T result = (T)e.value;
            return result;
        }
    }
    return setInitialValue();
}
private T setInitialValue() {
    T value = initialValue();
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
    return value;
}

protected T initialValue() {
    return null;
}

void createMap(Thread t, T firstValue) {
    t.threadLocals = new ThreadLocalMap(this, firstValue);
}

map.getEntry

private Entry getEntry(ThreadLocal<?> key) {
    int i = key.threadLocalHashCode & (table.length - 1);
    Entry e = table[i];
    if (e != null && e.get() == key)
        return e;
    else
        return getEntryAfterMiss(key, i, e);
}

getEntryAfterMiss

private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
    Entry[] tab = table;
    int len = tab.length;

    while (e != null) {
        ThreadLocal<?> k = e.get();
        if (k == key)
            return e;
        if (k == null)
            expungeStaleEntry(i);
        else
            i = nextIndex(i, len);
        e = tab[i];
    }
    return null;
}

整体逻辑还是很清晰了,通过while循环,不断获取Entry数组中的下一个节点,循环中有三个逻辑走向

  1. 当前节点的key等于当前ThreadLocal实例:直接返回这个节点的Entry
  2. 当前节点的key为null:执行擦除旧节点算法,继续循环
  3. 当前节点的可以不等于当前ThreadLocal实例且不为null:获取下一节点的下标,然后继续上面的逻辑

get流程-getEntryAfterMiss

总结

ThreadLocal的流程,总体上比较简单

get流程

擦除算法

在set流程和get流程都使用了这个擦除旧节点的逻辑,它可以及时清除掉Entry数组中,那些key为null的Entry,如果key为null,说明这些这节点,已经没地方使用了,所以就需要清除掉

private int expungeStaleEntry(int staleSlot) {
    Entry[] tab = table;
    int len = tab.length;

    // expunge entry at staleSlot
    tab[staleSlot].value = null;
    tab[staleSlot] = null;
    size--;

    // Rehash until we encounter null
    Entry e;
    int i;
    for (i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) {
        ThreadLocal<?> k = e.get();
        if (k == null) {
            e.value = null;
            tab[i] = null;
            size--;
        } else {
            int h = k.threadLocalHashCode & (len - 1);
            if (h != i) {
                tab[i] = null;

                // Unlike Knuth 6.4 Algorithm R, we must scan until
                // null because multiple entries could have been stale.
                while (tab[h] != null)
                    h = nextIndex(h, len);
                tab[h] = e;
            }
        }
    }
    return i;
}

前置操作

从上面的代码,可以发现,再进行主要的循环体,有个前置操作

private int expungeStaleEntry(int staleSlot) {
    Entry[] tab = table;
    int len = tab.length;

    // expunge entry at staleSlot
    tab[staleSlot].value = null;
    tab[staleSlot] = null;
    size--;

    ...
}
擦除算法-前置操作

主体逻辑

private int expungeStaleEntry(int staleSlot) {
    Entry[] tab = table;
    int len = tab.length;
	...
    // Rehash until we encounter null
    Entry e;
    int i;
    for (i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) {
        ThreadLocal<?> k = e.get();
        if (k == null) {
            e.value = null;
            tab[i] = null;
            size--;
        } else {
            int h = k.threadLocalHashCode & (len - 1);
            if (h != i) {
                tab[i] = null;

                // Unlike Knuth 6.4 Algorithm R, we must scan until
                // null because multiple entries could have been stale.
                while (tab[h] != null)
                    h = nextIndex(h, len);
                tab[h] = e;
            }
        }
    }
    return i;
}

擦除算法-主体逻辑

总结

代码很少,但是实现的功能却并不少

扩容

在进行set操作的时候,会进行相关的扩容操作

public void set(T value) {
    ...
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
}

private void set(ThreadLocal<?> key, Object value) {
	...
    tab[i] = new Entry(key, value);
    int sz = ++size;
    if (!cleanSomeSlots(i, sz) && sz >= threshold)
        rehash();
}

private void rehash() {
    expungeStaleEntries();

    // Use lower threshold for doubling to avoid hysteresis
    if (size >= threshold - threshold / 4)
        resize();
}
private void resize() {
    Entry[] oldTab = table;
    int oldLen = oldTab.length;
    int newLen = oldLen * 2;
    Entry[] newTab = new Entry[newLen];
    int count = 0;

    for (int j = 0; j < oldLen; ++j) {
        Entry e = oldTab[j];
        if (e != null) {
            ThreadLocal<?> k = e.get();
            if (k == null) {
                e.value = null; // Help the GC
            } else {
                int h = k.threadLocalHashCode & (newLen - 1);
                while (newTab[h] != null)
                    h = nextIndex(h, newLen);
                newTab[h] = e;
                count++;
            }
        }
    }

    setThreshold(newLen);
    size = count;
    table = newTab;
}

触发条件

先来看下扩容的触发条件吧

public void set(T value) {
    ...
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
}

private void set(ThreadLocal<?> key, Object value) {
	...
    tab[i] = new Entry(key, value);
    int sz = ++size;
    if (!cleanSomeSlots(i, sz) && sz >= threshold)
        rehash();
}

private void rehash() {
    expungeStaleEntries();

    // Use lower threshold for doubling to avoid hysteresis
    if (size >= threshold - threshold / 4)
        resize();
}

上面主要的代码就是:!cleanSomeSlots(i, sz) && sz >= threshold

ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
    table = new Entry[INITIAL_CAPACITY];
    int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
    table[i] = new Entry(firstKey, firstValue);
    size = 1;
    setThreshold(INITIAL_CAPACITY);
}

private void setThreshold(int len) {
    threshold = len * 2 / 3;
}
private boolean cleanSomeSlots(int i, int n) {
    boolean removed = false;
    Entry[] tab = table;
    int len = tab.length;
    do {
        i = nextIndex(i, len);
        Entry e = tab[i];
        if (e != null && e.get() == null) {
            n = len;
            removed = true;
            i = expungeStaleEntry(i);
        }
    } while ( (n >>>= 1) != 0);
    return removed;
}

n >>>= 1:表达是无符号右移一位,正数高位补0,负数高位补1

举例:0011 ---> 0001

在上面的cleanSomeSlots方法中,只要在探测节点的时候,没有遇到Entry的key为null的节点,该方法就会返回false

private void rehash() {
    expungeStaleEntries();

    // Use lower threshold for doubling to avoid hysteresis
    if (size >= threshold - threshold / 4)
        resize();
}

总结

满足下面俩个条件即可

  1. Entry数组中不含key为null的Entry实例
  2. 数组中含有是实例数大于等于threshold的四分之三(threshold为数组长度的 三分之二)

扩容逻辑

private void resize() {
    Entry[] oldTab = table;
    int oldLen = oldTab.length;
    int newLen = oldLen * 2;
    Entry[] newTab = new Entry[newLen];
    int count = 0;

    for (int j = 0; j < oldLen; ++j) {
        Entry e = oldTab[j];
        if (e != null) {
            ThreadLocal<?> k = e.get();
            if (k == null) {
                e.value = null; // Help the GC
            } else {
                int h = k.threadLocalHashCode & (newLen - 1);
                while (newTab[h] != null)
                    h = nextIndex(h, newLen);
                newTab[h] = e;
                count++;
            }
        }
    }

    setThreshold(newLen);
    size = count;
    table = newTab;
}

扩容机制

总结

可以发现

remove

remove方法是非常简单的,ThreadLocal拥有三个api:set、get、remove;虽然非常简单,但是还有一些必要,来稍微了解下

public void remove() {
    ThreadLocalMap m = getMap(Thread.currentThread());
    if (m != null)
        m.remove(this);
}

private void remove(ThreadLocal<?> key) {
    Entry[] tab = table;
    int len = tab.length;
    int i = key.threadLocalHashCode & (len-1);
    for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i, len)]) {
        if (e.get() == key) {
            e.clear();
            expungeStaleEntry(i);
            return;
        }
    }
}

逻辑非常的清晰,通过ThreadLocal实例,获取当前的index,然后从此开始查找符合条件Entry,找到后,会将其key值清掉,然后执行擦除算法

e.clear就是,弱引用的清理弱引用的方法,很简单,将弱引用referent变量置空就行了,这个变量就是持有弱引用对象的变量

remove流程

最后

文章写到这里,基本上到了尾声了,写了差不多万余字,希望大家看完后,对ThreadLocal能有个更加深入的认识

ThreadLocal的源码虽然并不多,但是其中有很多奇思妙想,有种萝卜雕花的感觉,这就是高手写的代码吗?

img

系列文章

标签:int,value,ThreadLocal,源码,奇思妙想,key,Entry,null
来源: https://www.cnblogs.com/xdd666/p/14734047.html