数据结构--二叉树--创建,复制,计算高度,叶子结点总数,叶子总数--c++
作者:互联网
###递归算法NB
#include <iostream>
using namespace std;
typedef char BTDataType;
typedef struct BiTNode
{
BTDataType data;
struct BiTNode* lchild, * rchild;
}BiTNode, * BiTree;
//按先序次序输入二叉树结点的值(一个字符),创建二叉链表表示的二叉树T
void CreateBiTree(BiTree& T) {
char ch;
cin >> ch;
if (ch == '#') T = NULL; //递归结束,建空树
else
{
T = new BiTNode; //生成根结点
T->data = ch; //根节点数据域置为ch
CreateBiTree(T->lchild); //递归创建左子树
CreateBiTree(T->rchild); //递归创建右子树
}
}
//为了方便测试,不用一个个输入创建二叉树,这个数组是先序存放的二叉树,深度为4
char treeArray[] = { 'A','B','#','C','D','#','#','E','#','#','F','#','G','H','#','#','#' };
int i = 0;
void CreateBiTreeTest(BiTree& T) {
char ch;
ch = treeArray[i++];
if (ch == '#') T = NULL;
else
{
T = new BiTNode;
T->data = ch;
CreateBiTreeTest(T->lchild);
CreateBiTreeTest(T->rchild);
}
}
//复制一颗和T完全相同的二叉树
void Copy(BiTree T, BiTree& NewT)
{
if (T == NULL)
{
NewT = NULL;
return;
}
else
{
NewT = new BiTNode;
NewT->data = T->data; //复制根节点
Copy(T->lchild, NewT->lchild); //递归复制左子树
Copy(T->rchild, NewT->rchild); //递归复制右子树
}
}
//计算二叉树的深度--在后序遍历二叉树的基础上进行的运算
int Depth(BiTree T)
{
int m = 0, n = 0;
if (T == NULL) return 0;
else
{
m = Depth(T->lchild); //递归计算右子树的深度m
n = Depth(T->rchild); //递归计算左子树的深度n
if (m > n) return m + 1; //左右深度较大者+1根节点
else return n + 1;
}
}
//统计二叉树T中结点的个数
int NodeCount(BiTree T)
{
if (T == NULL) return 0;
else return NodeCount(T->lchild) + NodeCount(T->rchild) + 1;
}
//计算二叉树叶子结点总数
int LeadCount(BiTree T)
{
if (T == NULL) return 0;
if (T->lchild == NULL && T->rchild == NULL) return 1;
else return LeadCount(T->lchild) + LeadCount(T->rchild);
}
int main()
{
BiTree T;
CreateBiTreeTest(T); i = 0; //方便测试,不用输入创建
cout << Depth(T) << endl;
cout << NodeCount(T) << endl;
cout << LeadCount(T) << endl;
return 0;
}
标签:lchild,总数,return,--,BiTree,叶子,ch,二叉树,rchild 来源: https://blog.csdn.net/a2272062968/article/details/115362052