数据挖掘-数据分类 python实现
作者:互联网
数据挖掘-数据分类 python实现
利用KNN实现性别判定
# -*-coding:utf-8-*-
"""
Author: Thinkgamer
Desc:
代码4-5 利用KNN算法实现性别预测
"""
import numpy as np
class KNN:
def __init__(self, k):
# k为最近邻个数
self.K = k
# 准备数据
def createData(self):
features = np.array([[180, 76], [158, 43], [176, 78], [161, 49]])
labels = ["男", "女", "男", "女"]
return features, labels
# 数据进行Min-Max标准化
def Normalization(self, data):
maxs = np.max(data, axis=0)
mins = np.min(data, axis=0)
new_data = (data - mins) / (maxs - mins)
return new_data, maxs, mins
# 计算k近邻
def classify(self, one, data, labels):
# 计算新样本与数据集中每个样本之间的距离,这里距离采用的欧式距离计算方法
differenceData = data - one
squareData = (differenceData ** 2).sum(axis=1)
distance = squareData ** 0.5
sortDistanceIndex = distance.argsort()
# 统计K近邻的label
labelCount = dict()
for i in range(self.K):
label = labels[sortDistanceIndex[i]]
labelCount.setdefault(label, 0)
labelCount[label] += 1
# 计算结果
sortLabelCount = sorted(labelCount.items(), key=lambda x: x[1], reverse=True)
print(sortLabelCount)
return sortLabelCount[0][0]
if __name__ == "__main__":
# 初始化类对象
knn = KNN(3)
# 创建数据集
features, labels = knn.createData()
# 数据集标准化
new_data, maxs, mins = knn.Normalization(features)
# 新数据的标准化
one = np.array([176, 76])
new_one = (one - mins) / (maxs - mins)
# 计算新数据的性别
result = knn.classify(new_one, new_data, labels)
print("数据 {} 的预测性别为 : {}".format(one, result))
结果
[('男', 2), ('女', 1)]
数据 [176 76] 的预测性别为 : 男
标签:__,labels,python,self,分类,数据挖掘,new,mins,data 来源: https://blog.csdn.net/qq_45047246/article/details/113801798