39、使用C++ 调用腾讯开源框架NCNN调用YOLOFast,并实现视频流的自动化的labelme标注json数据
作者:互联网
基本思想: 首先使用c++调用了腾讯的开源框架NCNN,然后使用腾讯的rapidjson实现自动化的labelme格式化json生成,实现了自动化识别和标注数据,人工稍微修正存在错误的数据集即可;(可以python调用该静态包,但是比较喜欢c++O(∩_∩)O哈哈~)该工程的源代码:
https://github.com/sxj731533730/Autolabel.git
第一步:首先下载NCNN源代码:https://github.com/Tencent/ncnn
ubuntu@ubuntu:~$ git clone https://github.com/Tencent/ncnn.git
ubuntu@ubuntu:~$ cd ncnn/
ubuntu@ubuntu:~/ncnn$ ./build.sh
然后在目录/home/ubuntu/ncnn/build-host-gcc-linux/src/ 会生成一个静态包libncnn.a
第二步:下载android版本的对应包:https://github.com/Tencent/ncnn/releases/download/20200916/ncnn-android-lib.zip
将头文件include拖出来,放入clion工程中;同时将上述编译的静态包也拖入到新建的libs文件夹中,目录结构如下:
ubuntu@ubuntu:~/CLionProjects/untitled3$ tree -L 2
.
├── cmake-build-debug
│ ├── CMakeCache.txt
│ ├── CMakeFiles
│ ├── cmake_install.cmake
│ ├── Makefile
│ └── untitled3.cbp
├── CMakeLists.txt
├── include
│ └── ncnn
├── libs
│ └── libncnn.a
└── main.cpp
5 directories, 7 files
修改CmakeLIst.txt文件和对应的代码如下:
cmake_minimum_required(VERSION 3.17)
project(untitled3)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fopenmp")
include_directories(${CMAKE_SOURCE_DIR}/include)
#导入ncnn
add_library(libncnn STATIC IMPORTED)
set_target_properties(libncnn PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/libs/libncnn.a)
find_package(OpenCV REQUIRED)
set(CMAKE_CXX_STANDARD 11)
add_executable(untitled3 main.cpp)
target_link_libraries(untitled3 libncnn ${OpenCV_LIBS})
修改代码和指定模型路径;参考链接代码链接:https://blog.csdn.net/sxj731533730/article/details/108616226
#include "ncnn/benchmark.h"
#include "ncnn/cpu.h"
#include "ncnn/datareader.h"
#include "ncnn/net.h"
#include "ncnn/gpu.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace cv;
using namespace std;
using namespace ncnn;
int demo(cv::Mat& image, ncnn::Net &detector, int detector_size_width, int detector_size_height)
{
static const char* class_names[] = {"background",
"aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair",
"cow", "diningtable", "dog", "horse",
"motorbike", "person", "pottedplant",
"sheep", "sofa", "train", "tvmonitor"
};
cv::Mat bgr = image.clone();
int img_w = bgr.cols;
int img_h = bgr.rows;
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB,\
bgr.cols, bgr.rows, detector_size_width, detector_size_height);
//数据预处理
const float mean_vals[3] = {0.f, 0.f, 0.f};
const float norm_vals[3] = {1/255.f, 1/255.f, 1/255.f};
in.substract_mean_normalize(mean_vals, norm_vals);
ncnn::Extractor ex = detector.create_extractor();
ex.set_num_threads(8);
ex.input("data", in);
ncnn::Mat out;
ex.extract("output", out);
for (int i = 0; i < out.h; i++)
{
int label;
float x1, y1, x2, y2, score;
float pw,ph,cx,cy;
const float* values = out.row(i);
x1 = values[2] * img_w;
y1 = values[3] * img_h;
x2 = values[4] * img_w;
y2 = values[5] * img_h;
score = values[1];
label = values[0];
//处理坐标越界问题
if(x1<0) x1=0;
if(y1<0) y1=0;
if(x2<0) x2=0;
if(y2<0) y2=0;
if(x1>img_w) x1=img_w;
if(y1>img_h) y1=img_h;
if(x2>img_w) x2=img_w;
if(y2>img_h) y2=img_h;
cv::rectangle (image, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(255, 255, 0), 1, 1, 0);
char text[256];
sprintf(text, "%s %.1f%%", class_names[label], score * 100);
int baseLine = 0;
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
cv::putText(image, text, cv::Point(x1, y1 + label_size.height),
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
}
return 0;
}
//摄像头测试
int test_cam()
{
//定义yolo-fastest VOC检测器
ncnn::Net detector;
detector.load_param("/home/ubuntu/CLionProjects/untitled3/model/yolo-fastest.param");
detector.load_model("/home/ubuntu/CLionProjects/untitled3/model/yolo-fastest.bin");
int detector_size_width = 320;
int detector_size_height = 320;
cv::Mat frame;
cv::VideoCapture cap(0);
while (true)
{
cap >> frame;
double start = ncnn::get_current_time();
demo(frame, detector, detector_size_width, detector_size_height);
double end = ncnn::get_current_time();
double time = end - start;
printf("Time:%7.2f \n",time);
cv::imshow("demo", frame);
cv::waitKey(1);
}
return 0;
}
int main()
{
test_cam();
return 0;
}
完成了c++ 调用小企鹅的NCNN框架,然后在使用小马哥的rapidjson组件的功能,拼凑labelme标注的标注json格式数据;
下载 https://github.com/Tencent/rapidjson 或者使用命令安装,但是在clion工程中仍然使用头文件
sudo apt-get install rapidjson-dev
ubuntu@ubuntu:~$ git clone https://github.com/Tencent/rapidjson.git
ubuntu@ubuntu:~$ cd rapidjson/
ubuntu@ubuntu:~/rapidjson$ mkdir -p build
ubuntu@ubuntu:~/rapidjson$ cd build/
ubuntu@ubuntu:~/rapidjson/build$ cmake ..
ubuntu@ubuntu:~/rapidjson/build$ sudo make install
然后,将工程中include文件拷贝到CLion工程,整个工程目录为:
.
├── cmake-build-debug
│ ├── CMakeCache.txt
│ ├── CMakeFiles
│ ├── cmake_install.cmake
│ ├── Makefile
│ ├── untitled3
│ └── untitled3.cbp
├── CMakeLists.txt
├── include
│ ├── ncnn
│ └── rapidjson
├── libs
│ └── libncnn.a
├── main.cpp
└── model
├── yolo-fastest.bin
└── yolo-fastest.param
7 directories, 10 files
修改代码为检测图片的目录和生成对应的检测json文件(增加生成json模块);
#include "ncnn/benchmark.h"
#include "ncnn/cpu.h"
#include "ncnn/datareader.h"
#include "ncnn/net.h"
#include "ncnn/gpu.h"
#include "rapidjson/document.h"
#include "rapidjson/writer.h"
#include "rapidjson/stringbuffer.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <vector>
#include <fstream>
using namespace cv;
using namespace std;
using namespace ncnn;
using namespace rapidjson;
struct LabelInfo {
int label;
float x_min;
float y_min;
float x_max;
float y_max;
};
LabelInfo labelinfo;
vector<LabelInfo> vec_info;
ncnn::Net detector;
int
detect(cv::Mat &image, ncnn::Net &detector, int detector_size_width, int detector_size_height, char *class_names[]) {
cv::Mat bgr = image.clone();
int img_w = bgr.cols;
int img_h = bgr.rows;
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, \
bgr.cols, bgr.rows, detector_size_width, detector_size_height);
//数据预处理
const float mean_vals[3] = {0.f, 0.f, 0.f};
const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f};
in.substract_mean_normalize(mean_vals, norm_vals);
ncnn::Extractor ex = detector.create_extractor();
ex.set_num_threads(8);
ex.input("data", in);
ncnn::Mat out;
ex.extract("output", out);
for (int i = 0; i < out.h; i++) {
int label;
float x1, y1, x2, y2, score;
float pw, ph, cx, cy;
const float *values = out.row(i);
x1 = values[2] * img_w;
y1 = values[3] * img_h;
x2 = values[4] * img_w;
y2 = values[5] * img_h;
score = values[1];
label = values[0];
//处理坐标越界问题
if (x1 < 0) x1 = 0;
if (y1 < 0) y1 = 0;
if (x2 < 0) x2 = 0;
if (y2 < 0) y2 = 0;
if (x1 > img_w) x1 = img_w;
if (y1 > img_h) y1 = img_h;
if (x2 > img_w) x2 = img_w;
if (y2 > img_h) y2 = img_h;
//cv::rectangle(image, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(255, 255, 0), 1, 1, 0);
char text[256];
sprintf(text, "%s %.1f%%", class_names[label], score * 100);
int baseLine = 0;
//cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
//cv::putText(image, text, cv::Point(x1, y1 + label_size.height),cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
labelinfo.label = label;
labelinfo.x_min = x1;
labelinfo.y_min = y1;
labelinfo.x_max = x2;
labelinfo.y_max = y2;
vec_info.push_back(labelinfo);
}
}
int init_detect(char *detect_param, char *detect_bin) {
//定义yolo-fastest VOC检测器
detector.load_param(detect_param);
detector.load_model(detect_bin);
}
// 帧号 目的json文件 帧 图片目的 生成json文件 图片的实际宽和高 文件的基本名字
void
makejson(string frame_name, cv::Mat &frame, string image_destion, string json_destion, int imageWidth, int imageHeight, char *class_names[]) {
if (vec_info.size()) {
rapidjson::Document doc;
doc.SetObject();
rapidjson::Document::AllocatorType &allocator = doc.GetAllocator();
//成员1
rapidjson::Value str_version(rapidjson::kStringType);
str_version.SetString("4.5.6");
rapidjson::Value str_flags(rapidjson::kStringType);
str_flags.SetObject();
rapidjson::Value str_imageData(rapidjson::kStringType);
str_imageData.SetNull();
rapidjson::Value str_imageWidth(rapidjson::kStringType);
str_imageWidth.SetInt(imageWidth);
rapidjson::Value str_imageHeight(rapidjson::kStringType);
str_imageHeight.SetInt(imageHeight);
rapidjson::Value str_imagePath(rapidjson::kStringType);
string image_frame_name = frame_name + ".jpg";
str_imagePath.SetString(image_frame_name.c_str(), image_frame_name.length(), allocator);
rapidjson::Value ary(rapidjson::kArrayType);
for(int i=0;i<vec_info.size();i++)
{
// 嵌套成员2对象
rapidjson::Document sub_doc;
sub_doc.SetObject();
rapidjson::Document::AllocatorType &sub_allocator = sub_doc.GetAllocator();
rapidjson::Value sub_str_shape_type(rapidjson::kStringType);
sub_str_shape_type.SetString("rectangle");
rapidjson::Value sub_str_flags(rapidjson::kStringType);
sub_str_flags.SetObject();
rapidjson::Value sub_str_group_id(rapidjson::kStringType);
sub_str_group_id.SetNull();
rapidjson::Value sub_str_label(rapidjson::kStringType);
int labelid=vec_info[i].label;
string labelname=class_names[labelid];
sub_str_label.SetString(labelname.c_str(), labelname.length(), allocator);
// 嵌套坐标点
Value sub_array0(kArrayType);
Value sub_array1(kArrayType);
Value sub_point(kArrayType);
float x_min=vec_info[i].x_min;
float y_min=vec_info[i].y_min;
float x_max=vec_info[i].x_max;
float y_max=vec_info[i].y_max;
sub_array0.PushBack(x_min, allocator).PushBack(y_min, allocator);
sub_array1.PushBack(x_max, allocator).PushBack(y_max, allocator);
sub_point.PushBack(sub_array0, allocator);
sub_point.PushBack(sub_array1, allocator);
sub_doc.AddMember("points", sub_point, allocator);
// 嵌套坐标点完成
sub_doc.AddMember("shape_type", sub_str_shape_type, allocator);
sub_doc.AddMember("flags", sub_str_flags, allocator);
sub_doc.AddMember("group_id", sub_str_group_id, allocator);
sub_doc.AddMember("label", sub_str_label, allocator);
ary.PushBack(sub_doc, allocator);
//成员2完成
}
//加入doc中
doc.AddMember("version", str_version, allocator);
doc.AddMember("flags", str_flags, allocator);
doc.AddMember("imageData", str_imageData, allocator);
doc.AddMember("imageWidth", imageWidth, allocator);
doc.AddMember("imageHeight", imageHeight, allocator);
doc.AddMember("imagePath", str_imagePath, allocator);
doc.AddMember("shapes", ary, allocator);
//转化为string
rapidjson::StringBuffer buffer;
rapidjson::Writer<rapidjson::StringBuffer> write(buffer);
doc.Accept(write);
std::string json = buffer.GetString();
// Output {"project":"rapidjson","stars":11}
std::cout << json << std::endl;
ofstream fout;
string destination_name=json_destion+"/"+frame_name+".json";
fout.open(destination_name); //可以使绝对和相对路径,用\\隔开目录,test, test.json, test.txt 都行,不局限于文件格式后缀,只要是文本文档
fout<<buffer.GetString();
fout.close();
string destination_image=image_destion+"/"+frame_name+".jpg";
imwrite(destination_image,frame);
}
vec_info.clear();
vector<LabelInfo>().swap(vec_info);
}
void detect_object(char *video_src, int detector_size_width, int detector_size_height, char *class_names[],
string image_destion, string json_destion) {
char *base_name = basename(video_src);
string label_ext = base_name;
string file_name = label_ext.substr(0, label_ext.rfind("."));
cv::Mat frame;
cv::VideoCapture cap(video_src);
int frame_num = 0;
while (cap.read(frame)) {
double start = ncnn::get_current_time();
detect(frame, detector, detector_size_width, detector_size_height, class_names);
double end = ncnn::get_current_time();
double time = end - start;
string frame_name = file_name + to_string(frame_num);
makejson(frame_name, frame, image_destion, json_destion, frame.rows, frame.cols,class_names);
printf("Time:%7.2f \n", time);
cv::imshow("demo", frame);
cv::waitKey(1);
frame_num++;
}
cap.release();
destroyAllWindows();
}
int main() {
char *video_src = "/home/ubuntu/MOT16Labels/MOT16-06-raw.webm";
char *detect_param = "/home/ubuntu/CLionProjects/untitled3/model/yolo-fastest.param";
char *detect_bin = "/home/ubuntu/CLionProjects/untitled3/model/yolo-fastest.bin";
int detector_size_width = 320;
int detector_size_height = 320;
char *class_names[] = {"background",
"aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair",
"cow", "diningtable", "dog", "horse",
"motorbike", "person", "pottedplant",
"sheep", "sofa", "train", "tvmonitor"
};
string image_destion = "/home/ubuntu/Downloads/A";
string json_destion = "/home/ubuntu/Downloads/A";
init_detect(detect_param, detect_bin);
detect_object(video_src, detector_size_width, detector_size_height, class_names, image_destion, json_destion);
return 0;
}
标签:39,调用,YOLOFast,int,cv,ncnn,detector,include,rapidjson 来源: https://blog.csdn.net/sxj731533730/article/details/109009227