15转载python实现小波分解【实测成功】
作者:互联网
仅作为操作记录,大佬请跳过。
感谢大佬博主,传送门
代码可直接运行
import numpy as np
import matplotlib.pyplot as plt
import pywt
import pywt.data
ecg = pywt.data.ecg()
data1 = np.concatenate((np.arange(1, 400),
np.arange(398, 600),
np.arange(601, 1024)))
x = np.linspace(0.082, 2.128, num=1024)[::-1]
data2 = np.sin(40 * np.log(x)) * np.sign((np.log(x)))
mode = pywt.Modes.smooth
def plot_signal_decomp(data, w, title):
"""Decompose and plot a signal S.
S = An + Dn + Dn-1 + ... + D1
"""
w = pywt.Wavelet(w)#选取小波函数
a = data
ca = []#近似分量
cd = []#细节分量
for i in range(5):
(a, d) = pywt.dwt(a, w, mode)#进行5阶离散小波变换
ca.append(a)
cd.append(d)
rec_a = []
rec_d = []
for i, coeff in enumerate(ca):
coeff_list = [coeff, None] + [None] * i
rec_a.append(pywt.waverec(coeff_list, w))#重构
for i, coeff in enumerate(cd):
coeff_list = [None, coeff] + [None] * i
if i ==3:
print(len(coeff))
print(len(coeff_list))
rec_d.append(pywt.waverec(coeff_list, w))
fig = plt.figure()
ax_main = fig.add_subplot(len(rec_a) + 1, 1, 1)
ax_main.set_title(title)
ax_main.plot(data)
ax_main.set_xlim(0, len(data) - 1)
for i, y in enumerate(rec_a):
ax = fig.add_subplot(len(rec_a) + 1, 2, 3 + i * 2)
ax.plot(y, 'r')
ax.set_xlim(0, len(y) - 1)
ax.set_ylabel("A%d" % (i + 1))
for i, y in enumerate(rec_d):
ax = fig.add_subplot(len(rec_d) + 1, 2, 4 + i * 2)
ax.plot(y, 'g')
ax.set_xlim(0, len(y) - 1)
ax.set_ylabel("D%d" % (i + 1))
#plot_signal_decomp(data1, 'coif5', "DWT: Signal irregularity")
#plot_signal_decomp(data2, 'sym5',
# "DWT: Frequency and phase change - Symmlets5")
plot_signal_decomp(ecg, 'sym5', "DWT: Ecg sample - Symmlets5")
plt.show()
展示:
标签:15,python,coeff,len,实测,pywt,rec,np,ax 来源: https://blog.csdn.net/weixin_41529093/article/details/111039950